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Note: This really is a brief tour. You will �nd additional details in the excellent probabil-
ity and statistics review in Appendix B of our textbook. Everyone should read through this
appendix. I'm also including some other material that we'll need on stochastic processes.

1. Probability

We'll begin with a few simple examples, one with a discrete set of outcomes and the other
a continuous set.

Example 1.1. Consider the experiment of randomly selecting an individual out of the entire
population of a certain species of animal for the purpose of some measurement. The selection
of a particular individual could be thought of as an outcome to this random experiment.
Selection of a male would amount to an event E , and the probability of selecting a male
would be a number P (E) between 0 and 1.
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Example 1.2. Consider the experiment of throwing a dart at a dart board. We assume
that the throw always hits the dart board somewhere. Here the outcome of this experiment
is to locate the dart on some point on the dart board, so we can think of these points as
outcomes. One event of interest is the event E of hitting the bulls eye region with the dart.
Again, the probability of doing so would be a number P (E) between 0 and 1.

Here are some of the key concepts of probability theory. You should relate these to the
two experiments just described.

• Sample Space: A set S of possible outcomes from a random experiment or sequence
thereof.

• Event: Any subset of the sample space S, i.e., of outcomes. (In some cases, there
might be limitations on what subsets are admissible.)

• Probability measure: A way of measuring the likelihood that an outcome belongs
to event E. This is a function P (E) of events with natural properties: 0 ≤ P (E) ≤ 1,
P (S) = 1 and for disjoint events Ei,

∞∑
i=1

P (Ei) = P

(
∞⋃
i=1

Ei

)
.

Simple consequence: If E is an event, then the probability of the complementary
event E occurring is

P
(
E
)

= 1− P (E)

• Conditional probability: This is the probability that an event E occurs, given
that event F has occurred. It is denoted and de�ned by the formula

P (E |F ) =
P (EF )

P (F )
.

Note the notation EF , which means the event of the occurrence of both E and F .
Another way of expressing this event is the set-theoretic notation E ∩ F .

• Independent events: Events E and F such that

P (EF ) = P (E) P (F )

in which case the conditional probability of E given F is

P (E | F ) ≡ P (EF )

P (F )
= P (E) .

• Law of Total Probability: Given disjoint and exhaustive events E1, E2,, . . . , En,
and another event F ,

P (F ) =
n∑

i=1

P (F |Ei) P (Ej)

• Bayes' Theorem:

P (E | F ) ≡ P (F | E) P (E)

P (F )
.
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Some writers identify Bayes' Theorem as a combination of the Law of Total Proba-
bility and the above, namely, with notation as in the LTP and index k,

P (Ek | F ) ≡ P (F | Ek) P (Ek)∑n
i=1 P (F |Ei) P (Ej)

.

2. Univariate Statistics

2.1. Random Variables. Once we have randomly selected an individual outcome ω in an
experiment, we can observe some relevant quantity and call it X(ω). This function X is
called a random variable, and a particular value observed in an experiment is customarily
denoted as x = X (ω).
Let's review the standard notations of this statistical framework.

• Random variable: a function X (abbreviate to r.v.) mapping outcomes to real
numbers. A particular value is denoted by lower case x.

• Probability density function: a function p mapping the range of a random vari-
able to probabilities (abbreviate to p.d.f.):
In the case the r.v. is discrete, say has values x1, x2, ... then

P (a ≤ X ≤ b) =
∑

{p (xi) | a ≤ xi ≤ b} .

In the discrete case, p (x) is also referred to as a probability mass function (p.m.f.).
If the r.v. is continuous, then the density function f satis�es

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx.

In this case f really is a density function with units of of probability per length.
Note: since an experiment always results in some value of the r.v. X, we must have∫∞
−∞ f (x) dx = 1 and a similar result for discrete r.v.'s

• The (cumulative) distribution function (abbreviate to c.d.f.) associated to the
r.v. is

p (x) = P (X ≤ x) =
∑

{p (xi) | xi ≤ x}
for discrete r.v.'s and

F (x) = P (X ≤ x) =

∫ x

−∞
f(s)ds

for continuous r.v.'s. Note: from properties of the p.d.f., we see that
� F (x) is a monotone increasing function, i.e., if x ≤ y, then F (x) ≤ F (y).
� lim

x→∞
F (x) = 1.

Example 2.1. Consider the experiment of Example_1.2. Once we have thrown the dart
and landed on ω, we might observe the score X (ω) we earned according to the portion of
the dart board on which our dart landed. Here X will take on a �nite number of values. Let
us further suppose that there are only two areas on the board: the center bulls-eye of area
A (winner, value 1) and an outer area B (loser, value 0.) Suppose that the probability of
hitting one area is proportional to its area. Then the probability of hitting the bulls-eye is

p =
A

A + B
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and the probability of losing is q = 1 − p. The p.d.f. is given by f (0) = q and f (1) = p.
The c.d.f. is given by F (0) = q and f (1) = 1.

An interesting variation on the previous example is to repeat the experiment, say n times.
Now the random variable X is your score: the number of times you hit the bulls-eye. The
p.d.f. for this experiment (called a Bernoulli trial) is the so-called binomial distribution

f (x) =

(
n
x

)
px (1− p)n−x , x = 0, 1, . . . , n

2.1.2. Continuous.

Example 2.2. Consider the experiment of Example 1.1. Once we have selected an animal
ω, we might take its weight and call it the statistic X(ω). Note that X could take on a
continuous range of values. The p.d.f. and c.d.f. of a continuous random variable are more
subtle and one often makes a priori assumptions about them.

Let's simplify our dart example, so we can obtain distributions more easily.

Example 2.3. Suppose that our target is not a two dimensional board, but a one dimensional
line segment, say the interval of points x such that a ≤ x ≤ b or symbolically, [a, b] Suppose
further that there is no bias toward any one point. Then it is reasonable to assume that the
p.d.f. is constant. Since it is de�ned on [a, b] and the area under this function should be 1,
we see that the p.d.f. is the function

f (x) =

{
1

b−a
if a ≤ x ≤ b

0 otherwise

while the c.d.f. should be

F (x) =


0 if x < a

1
b−a

(x− a) if a ≤ x ≤ b

1 if b < x.

This is the so-called uniform distribution.

Before we discuss further speci�c distributions, there are some more concepts we should
develop.

2.2. Expectation and Variance. Key concepts:

• Expectation of a function g of a r.v.:

E [g (X)] =

{∑
i g(xi)p(xi), if X is discrete∫∞

−∞ g(x)f(x)dx if X is continuous

• Expectation of X (or mean, �rst moment): µ = µX = E [X]. One can show

E [αX + β] = αE [X] + β

E [αX + βY ] = αE [X] + βE [Y ]
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• Variance of X: This is just

Var (X) = E
[
(X − E [X])2] .

One can show

Var (X) = E
[
X2
]
− E [X]2

Var (αX + β) = α2 Var (X)

• Standard deviation of X: σ = σX = Var (X)1/2

Basically, the idea is this: the expected value is a kind of weighted average of values, so that
one could say roughly that �on the average one expects the value of repeated experiments
to be the mean.� The variance and standard deviation are measures of the spread of the
random variable. Note that the units of σ are the same as the units of µ, so that the standard
deviation is a more practical measure of the spread of the random variable, but the variance
σ2 is more useful for some calculations and theoretical purposes.
Standard Notation: To save ourselves the inconvenience of always having to assign a

name to the p.d.f. and c.d.f. of a given r.v. X, we adopt the convention that

fX (x) = p.d.f. of the r.v. X

FX (x) = c.d.f. of the r.v. X.

2.3. Normality and the Central Limit Theorem. One of the most important single distri-
butions in statistics is the This is a r.v. whose density function is the famous bell shaped
curve

f (x) =
1√
2πσ

e−(x−µ)2/2σ2

, −∞ < x < ∞.

It can be shown that this really is a density function with mean µ and variance σ2. Its
corresponding distribution is

F (x) =
1√
2πσ

∫ x

−∞
e−(s−µ)2/2σ2

ds, −∞ < x < ∞.

The standard normal distribution is the one with µ = 0 and σ = 1, that is,

f(x) =
1√
2π

e−x2/2, −∞ < x < ∞

is the p.d.f. of the distribution. The c.d.f. for the standard normal distribution has the
following designation, which we use throughout our discussion of statistics:

N(x) =
1√
2π

∫ x

−∞
e−s2/2 ds, −∞ < x < ∞.

The notation N (µ, σ2) is used for a normal distribution of mean µ and variance σ2. One sees
phrases like �X is N (µ, σ2)� or �X N (µ, σ2).� We can pass back and forth between standard
normal distributions because of this important fact: if X has a distribution N (µ, σ2), then
Z = (X − µ) /σ has the distribution N (0, 1), the standard normal distribution.
Here is a key property of this important kind of distribution:

Theorem 2.4. If X and Y are independent normal random variables with parameters
(µ1, σ

2
1), (µ2, σ

2
2), then X + Y is normal with parameters (µ1 + µ2, σ

2
1 + σ2

2).
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It follows that this Theorem is true for any �nite number of independent r.v.'s.
In a limiting sense, sums of r.v.'s with �nite mean and variance tend to a normal distri-

bution. This is the Central Limit Theorem.

Theorem 2.5. (Central Limit Theorem) Let X1, X2, . . . , Xn be independent and identi-
cally distributed random variables with a �nite expected value µ and variance σ2. Then the
random variable

Zn =
X1 + X2 + · · ·+ Xn − nµ√

nσ
=

1
n

(X1 + X2 + · · ·+ Xn)− µ

σ/
√

n

has distribution that approaches the standard normal distribution as n →∞.

2.3.1. Some Common Distributions. Here are a few common distributions.
Binomial:

• f (x) =
n!

x! (n− x)!
px (1− p)n−x, x = 0, 1, . . . , n

• Mean: µ = np
• Variance: σ2 = np (1− p)
• Application: Bernoulli trials as in variation on Example 1.2.

Poisson:

• f (x) =
µxe−µ

x!
, x = 0, 1, . . .

• Mean: µ = µ
• Variance: σ2 = µ
• Application: A limiting case of binomial distribution. Used, e.g., to approximate
binomial distributions with large n and constant µ = np of moderate size (typically
< 5.) There is a whole family of �Poisson processes� that are used in problems like
manufacturing errors, etc.

Gamma:

• f (x) =
1

Γ (α) βα
xα−1e−x/β, 0 < x < ∞, Γ (x) =

∫∞
0

sx−1e−s ds. Here 2α = ν is called

the number of degrees of freedom.
• Mean: µ = αβ
• Variance: σ2 = αβ2

• Application: An umbrella for other extremely important p.d.f.'s. For example, α = 1,
β = 1/λ gives the family of exponential distributions and α = ν/2, β = 2 gives a
chi-square distribution with ν degrees of freedom, which is denoted as χ2 (ν). Also
used in queueing theory.

Normal:

• f (x) =
1√
2πσ

e−(x−µ)2/(2σ2), −∞ < x < ∞.

• Mean: µ = µ
• Variance: σ2 = σ2

• Application: Many, e.g., random error. Also, a distinguished distribution by way of
the Central Limit Theorem.

Student's t:
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• f (x) =
Γ ((ν + 1) /2)

Γ (ν/2)

1√
νπ

(
1 +

x2

ν

)−(ν+1)/2

, −∞ < x < ∞. Here ν is the number

of degrees of freedom.
• Mean: µ = 0
• Variance: σ2 = ν

ν−2

• Application: Approaches a standard normal distribution as ν → ∞. Also, given n
independent samples of normally distributed r.v.'s with a common unknown standard
deviation σ, let the sample mean be given by x = (x1 + x2 + · · ·+ xn) /n and the

sample variance by s2 =
1

n− 1

n∑
i=1

(xi − x)2, then the random variable

t =
X −X

S/
√

n

has a Student's t distribution with n− 1 degrees of freedom.

Lognormal:

• f (x) =
1√

2πσx
e−(ln x−ν)2/(2σ2), −∞ < x < ∞.

• Mean: µ = eν+σ2/2

• Variance: σ2 = e2ν+σ
(
eσ2 − 1

)
• Application: This is really the density function for eX , where X is normally dis-
tributed. Equivalently, X = ln Y . It is fundamentally important in modeling the

dynamics of asset prices. Note: we could write e−(log x−ν2)/(2σ2) as well, since we use
log for the natural log, like Matlab.

3. Joint Random Variables

For the most part, we'll restrict our discussion of joint random variables to continuous
distributions, though all the ideas have a discrete counter part. Likewise, the ideas we are
going to discuss extend to any number of r.v.'s, like X1, X2, . . . , Xn, but we will mostly
con�ne our attention to two r.v.'s, say X and Y

3.1. Joint Distributions. In order to motivate the idea of joint distributions, let's consider
Example 2.3 with a twist: we will throw a dart at our one dimensional dart board twice. With
each throw, we will note the position of the outcome on the interval [0, 1] and this number
is our random variable. This gives us two random variables X and Y which share the same
sample space of outcomes when viewed individually. Moreover, it makes the statistics of the
new experiment more complicated than just numbers on the interval 0 ≤ x ≤ 1. Now they
are ordered pairs of numbers (x, y) such that 0 ≤ x, y ≤ 1; In other words, they belong to a
unit square in the xy-plane. The event X + Y ≤ 1 can now be pictured as a subset of this
square.
Now suppose we ask the question: what is the probability that X + Y ≤ 1? In order to

answer this question, we need to understand how these variables behave jointly, so we will
need a p.d.f. f (x, y) that is a joint distribution of both random variables. Here �density�
means probability per unit area, not length. Once we have such a function, we can describe
the probability of an event A occurring as a double sum in the case of discrete r.v.'s and as
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a double integral in the case of a continuous r.v. Thus,

P (A) =

∫∫
A

f (x, y) dA.

In most cases we can reduce these double integrals over plane regions to iterated integrals as
in ordinary calculus. As an example of this, we can de�ne a joint cumulative distribution
function (c.d.f.) by the formula

F (x, y) = P (X ≤ x, Y ≤ y)

and obtain that

F (x, y) =

∫ x

−∞

∫ y

−∞
f (x, y) dy dx.

Now what about the p.d.f. of the example we have mentioned. This can get complicated. If
both throws are random, and the p.d.f. for each r.v. separately is the uniform distribution,
it is reasonable to expect that the joint p.d.f. should also be uniformly distributed, so we
have f (x, y) = 1. But what if the throws are not independent? For example, if we play a
game where the �score� of the throws, x + y, is close to a certain number, then where the
�rst dart landed will a�ect where we throw the second one. So in this case we would expect
f (x, y) to express a more complicated relationship between x and y.
Standard Notation: To save ourselves the inconvenience of always having to assign a

name to the joint p.d.f. and c.d.f. of given r.v.'s X and Y , we adopt the convention that

fX,Y (x, y) = joint p.d.f. of the r.v.'s X, Y.

FX,Y (x, y) = joint c.d.f. of the r.v.'s X, Y .

3.2. Expectation and Covariance. Just as with p.d.f.'s of one variable, one can de�ne
some key concepts for r.v.'s X and Y :

• Expectation of a function g (x, y) of r.v.'s:

E [g (X, Y )] =

∫ ∞

−∞

∫ ∞

−∞
g (x, y) fX,Y (x, y) dy dx.

• Covariance of X and Y : This is just

Cov (X, Y ) = E [(X − E [X]) (Y − E [Y ])] .

One can show from the de�nitions that

Var (X, X) = Var (X)

Var (aX + bY ) = a2 Var (X) + b2 Var (Y ) + 2ab Cov (X, Y )

Cov (X, Y ) = E [XY ]− E [X] E [Y ]

Cov (X, Y ) = Cov (Y,X)

Cov (aX, bY ) = ab Cov (X, Y )

Cov (X, Y + Z) = Cov (X, Y ) + Cov (X, Z)

• Correlation of X and Y :

ρ (X, Y ) =
Cov (X, Y )√

Var (X) Var (Y )
.

One can show that −1 ≤ ρ (X, Y ) ≤ 1 and that ρ (X, X) = 1. If ρ (X, Y ) = 0 or,
equivalently, Cov (X, Y ) = 0, we say that X and Y are uncorrelated.
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• Independent r.v.'s X and Y : means that for all a and b,

P (X ≤ a, Y ≤ b) = P (X ≤ a) P (Y ≤ b) .

One can show that if X and Y are independent and g(x), h(y) are any functions then

FX,Y (x, y) = FX (x) FY (y)

fX,Y (x, y) = fX (x) fY (y)

E [g(X)h(Y )] = E [g(X)] E [h(Y )] .

Thus we see that if two random variables X and Y are independent, then

Cov (X, Y ) = E [X − E [X]] E [Y − E [Y ]] = 0.

4. Vector Random Variables

A random vector is a vector X = (X1, X2, . . . , Xp) of random variables X1, X2, . . . , Xp.
Such variables are very common in practical statistics. For example, we might be interested
in a portfolio of p securities. The rate of return of each can be viewed as a random variable
Xi, i = 1, 2, . . . , p. At various times, we might sample these rates, so the resulting statistic
is a vector of samples (x1, x2, . . . , xp). These p random variables may have correlations. We
would be interested in studying the properties of the vector of random variables X taken as
a whole, not simply the individual components. We want to de�ne concepts analogous to
the expectation and variance that we learned in the univariate case.

4.1. Expected Value and Covariance of a Random Vector. Here is how they are
de�ned.

De�nition. The expected value (a.k.a. mean) of the random vector X = (X1, X2, . . . , Xp)
is

E [X] = (E [X1] , E [X2] , . . . , E [Xp]) .

De�nition. The covariance matrix (a.k.a. variance-covariance matrix, variance) of the
random vector X = (X1, X2, . . . , Xp) is the p × p matrix Σ whose (i, j)th entry is σij =
Cov (Xi, Xj). This matrix is also written as Var (X) or Cov (X).

De�nition. The correlation matrix of the random vector X = (X1, X2, . . . , Xp) is the p× p
matrix R whose (i, j)th entry is ρij = Corr (Xi, Xj).

Theorem 4.1. Let X = (X1, X2, . . . , Xp) be a random vector. Then

(1) Cov (X) = E
[
(X− E [X]) (X− E [X])T

]
.

(2) If D is the diagonal matrix whose diagonal entries are the standard deviations of
X1, X2, . . . , Xp (equivalently, the square roots of the diagonal entries of Cov (X)),
then

Corr (X) = D−1 Cov (X)D−1 and Cov (X) = D Corr (X) D.

.

Here are a few key facts from multivariate statistics which can be shown by applying
matrix arithmetic to the basic de�nitions:
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Theorem 4.2. Let X = (X1, X2, . . . , Xp) be a random vector and C any m×p matrix. Then

(1) E [CX] = CE [X].
(2) Cov (CX) = C Cov (X) CT .

A fundamental fact from matrix theory that is used in multivariate statistics is the prin-
cipal axes theorem, which can be found in the LinearAlgebra-384h notes. From this fact the
following key result can be deduced.

Theorem 4.3. (Principal Components Theorem) Let X = (X1, X2, . . . , Xp) be a ran-
dom vector.

(1) Then there exists an orthogonal matrix P (this means p × p matrix P is invertible
and P−1 = P T ), such that P T Cov (X) P = D, a diagonal matrix.

(2) The diagonal entries of D are the eigenvalues of Cov (X) and are non-negative.
(3) The columns of P are orthogonal eigenvectors of unit length with the kth column

corresponding to the kth diagonal entry of D.
(4) If Pk is the kth column of P, then the random variable Yk = PT

k X is the kth principal
component of X.

(5) The principal components of X are random variables with variances the corresponding
eigenvalues and covariances zero.

4.2. Multivariate Normal Distribution. Here is a generic example of an extremely im-
portant multivariate distribution. In the case of two r.v.'s this type of distribution is called
a bivariate distribution. These distributions are the �correct� analog in higher dimensions to
the normal distributions in one dimension. In the following example we need the concept of
a �symmetric positive de�nite matrix (SPD)�. First, a square n × n matrix A is sym-
metric if AT = A. Secondly, A is positive de�nite if xT Ax > 0 for all nonzero vectors x.
Some useful facts:

• If A is symmetric, then all the eigenvalues of A are real.
• A symmetric matrix is positive de�nite if and only of all its eigenvalues are positive.
• If A is symmetric, then there exists an orthogonal matrix Q (i.e., QT = Q−1) such that

QT AQ is diagonal and moreover the diagonal elements are exactly the eigenvalues of
A.

Example 4.4. Suppose that we are given a vector µ and an p× p matrix C = [ci,j] that is
SPD. De�ne the function

(1) f (x1, x2, . . . , xp) =
1

(2π)p/2
√

det (C)
e−(x−µ)T C−1(x−µ)/2, −∞ < xi < ∞.

Then the following are true:

• The function f (x1, x2, . . . , xp) is a joint p.d.f. for some r.v.'s X1, X2, . . . , Xp.
• Each Xi is normally distributed with mean µi and variance ci,i.
• ci,j = Cov (Xi, Xj) .
• If X = (X1, X2, . . . , Xp), then Cov (X) = C.

Notation: If X = (X1, X2, . . . , Xp) has the joint p.d.f. of (1), then we say that X is
distributed as Np (µ, Σ), where µ = (µ1, . . . , µp) and Σ = Cov (X) and write X ∼ Np (µ, Σ).
Finally, multivariate versions of the classical theorems for univariate statistics hold as well:

Theorem 4.5. If a is a p-vector and the random vector variable X ∼ Np (µ, Σ), then the
random variable aTX ∼ N

(
aT µ, aT Σa

)
.
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Theorem 4.6. (Multivariate Central Limit Theorem) Let X1,X2, . . . ,Xn be indepen-
dent and identically distributed random vector variables of length p with a �nite expected
value µ and covariance matrix Σ. Then the random vector variable

√
n
(
X− µ

)
has joint distribution that approaches Np (0, Σ) as n →∞.

5. Parameter Estimation

5.1. Con�dence Intervals. The word �statistic� has di�erent meanings to di�erent folks. For
us a statistic shall mean any de�nite function of one or more r.v.'s. Two important examples
come from the notion of a random sample, which means a sequence of independent and
identically distributed (abbreviated to i.i.d.) random variables, say with mean µ and variance
σ2:

• The mean of a random sample X1, X2, . . . , Xn:

X =
1

n

n∑
i=1

Xi.

• The variance of the mean of a random sample X1, X2, . . . , Xn:

Var
(
X
)

=
σ2

n
.

• The variance of a random sample X1, X2, . . . , Xn:

S2 =
1

n

n∑
i=1

(Xi − µ)2 .

• The sample variance of a random sample X1, X2, . . . , Xn:

S2 =
1

n− 1

n∑
i=1

(
Xi −X

)2
.

It can be shown that the mean of a random sample is an unbiased estimator of µ and the spe-
cial and sample variance are an unbiased estimators of the variance of the distribution; that
is, the expected values of sample mean, special and sample variance are µ, σ2, respectively.
In the case of a vector random variable X = (X1, X2, . . . , Xn), the de�nitions are nearly the

same. One has to be a bit careful about the notation here because the vector (X1, X2, . . . , Xn)
is not the same thing as a univariate random sample as above. In this setting, X1, X2, . . . , Xn

are random variables with a joint distribution and need not be independent. Rather, by a
vector random sample we means a sequence of independent and identically jointly distributed
(also abbreviated to i.i.d.) vector random variables with mean vector µ and covariance matrix
Σ:

• The mean vector of a random sample X1,X2, . . . ,Xn:

X =
1

n

n∑
i=1

Xi.
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• The covariance matrix of the mean of a random sample X1,X2, . . . ,Xn:

Cov
(
X
)

=
1

n
Σ.

• The covariance matrix of a random sample X1,X2, . . . ,Xn:

V =
1

n

n∑
i=1

(Xi − µ) (Xi − µ)T .

• The sample covariance matrix of a random sample X1,X2, . . . ,Xn:

S =
1

n− 1

n∑
i=1

(
Xi −X

) (
Xi −X

)T
.

• The sample correlation matrix of a random sample X1,X2, . . . ,Xn:

R = D−1SD,

where D is the diagonal matrix whose diagonal entries are the square roots of the
diagonal entries of S.

Analogous to the scalar case, it can be shown that the mean of a random sample is an unbi-
ased estimator of µ, variance and sample variance are unbiased estimators of the covariance
matrix of the distribution, that is, the expected values of sample mean, special and sample
variance are µ, Σ, respectively.
Key question: How do we estimate the mean and and variance of the distribution of these

random samples, or for that matter any other parameter associated with the distribution?
This question leads us to the notion of con�dence intervals: given a probability 1− α

called a �con�dence coe�cient� use the data to construct the smallest possible interval
I of real numbers such that the probability that the true value of the parameter being in
this interval is 1 − α. The use of 1 − α is a matter of convenience in formulas. One ofter
sees terms like the �95% con�dence interval�. This means the con�dence interval found with
1− α = 0.95. We'll explore these ideas for the case of mean and variance.
Motivation: What's so great about the mean?

Example 5.1. Suppose that we are attempting to measure a ideal and de�nite physical
quantity, say the mass m of the object. We do so by taking repeated measurements of the
mass, say m1, m2, . . . ,mn. What to do with these numbers? In the absence of any other
information, we might average them out, in the hopes that errors will somehow cancel each
other out. Is this realistic? Answer: sometimes.
Speci�cally, we'll describe the experiment more formally as a sequence M1, M2, . . . ,Mn of

r.v.'s. We may write
Mi = m + Xi

where Xi is the error of the ith measurement. Certainly, it is reasonable to assume that
these r.v.'s are independent. In many cases it is also reasonable to assume that the errors
are normally distributed with mean 0 and standard deviation σ. It follows that the Mi are
normally distributed with mean

E [Mi] = E [m + Xi] = E [m] + E [Xi] = m + 0 = m

and variance
Var (Mi) = Var (Ei) = σ2.
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In particular, the number we're really interested in, m, is the expectation of a normal random
variable. We'll see why the sample mean is useful by answering the key question.

The basic idea for computing con�dence intervals is to �nd a statistic X that is a �good�
estimator of the desired parameter and has a known distribution, which can be used to
compute a con�dence interval. Here's how: we split the probability into half and construct
an interval which has α/2 area under the p.d.f. fX to the left of the point a and area α/2
under the p.d.f. to the right of the point b. Here's a picture:

ba

α/2 α/2

y

x

y = fX(x)

1− α

We accomplish locating the points a and b as follows: solve the equations

FX (a) =
α

2

FX (b) = 1− α

2
.

If FX is continuous, we are guaranteed that solutions exist, and in fact, an inverse function
to the c.d.f. FX exists.
Finally, WHAT DOES ALL THIS MEAN, exactly??? It means that if you calculate a

con�dence interval based on data you have observed, and if all the hypotheses about i.i.d.
normal r.v.'s is correct, then the true value of parameter you are estimating is in this interval
with a probability of 1− α. Put another way: 100 · (1− α) times out of 100 this calculation
will yield an interval containing the desired parameter.
.

5.2. Estimating Mean with Known Variance and Normal Distribution. Some simple facts
about normal distributions play a key role here. Suppose that X1, X2, . . . , Xn are i.i.d.
normal r.v.'s with mean µ and variance σ2. From various facts outlined in these notes we
have:

• X1 + X2 + · · ·+ Xn has a normal distribution with mean nµ and variance nσ2. (See
p. 2.3.)

• So 1
n

(X1 + X2 + · · ·+ Xn) = X has a normal distribution with mean nµ/n = µ and

variance nσ2/n2 = σ2/n=(σ/
√

n)
2
. (See p. 2.3.)

• Hence Z =
(
X − µ

)
/ (σ/

√
n) has a standard normal distribution. (See p 2.3.)

Thus we have shown that

Theorem. Let X1, X2, . . . , Xn be i.i.d. normal r.v.'s with mean µ and variance σ2. Then
the statistic

Z =
X − µ

σ/
√

n

has a standard normal distribution.
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5.3. Estimating Mean with Unknown Variance and Normal Distribution. The Student's t
distribution plays a key role here. The key theorem is as follows:

Theorem. (Sampling Theorem) Let X1, X2, . . . , Xn be i.i.d. normal r.v.'s with mean µ and
variance σ2. Then the statistic

T =
X − µ

S/
√

n

has a Student's t distribution with n− 1 degrees of freedom.

Estimating Variance with a Normal Distribution. The chi-square distribution plays a key
role here.

Theorem. Let X1, X2, . . . , Xn be i.i.d. normal r.v.'s with mean µ and variance σ2. Then
the statistic

Y = (n− 1)
S2

σ2

has a chi-square distribution with n− 1 degrees of freedom.

We use these statistical facts as outlined above. If we are given sample data, we calculate
the resulting test statistic and observe whether or not it falls in the con�dence interval.

6. Stochastic Processes

6.1. Basic Ideas. Some random processes can be thought of as a sequence Xn, n = 0, 1, . . . ,
of random variables. Examples are daily measurements of temperature at some �xed locale
or values of a particular stock at the end of each day. If we try to pass from sequences of time
instants t0, t1, . . . and discrete random variables X(tn), to a continuum of time values t where
t ranges over some �nite or in�nite interval, we obtain a continuum of random variables X(t),
one for each time t. Let T be any time set such as a �nite or in�nite interval, or a sequence of
discrete times. Assume that there is an underlying sample space S and probability measure
P on S. A stochastic process is a function

X : T × S → R,

that is, mapping ordered pairs (t, ω) of time t and outcome ω to real numbers subject to the
condition that for each �xed time t , X(t, ω) is a random variable on the sample space S.
Thus, if we select and �x an outcome ω ∈ S, we obtain a function

X(·, ω) : T → R.

Such a function is called a realization (sample path, trajectory) of the stochastic process
X. Plots of sequences of random values can be thought of as a graph of a sample path. For
example, we could plot the value of a stock S(t) against time and we would have a realization
of the stochastic process S(t, ω). It is customary to suppress the outcome ω. Indeed, the
�outcomes� of these random experiments are rather nuanced: one could imagine selecting a
single universe, where the stock took one sample path, whereas in another parallel universe,
the stock behaved di�erently in time. Notice that it is possible that there is some correlation
between the random variables X(s) and X(t), s < t, or that they are entirely independent
of each other. We'll say more about this later.
Examples.
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(1) The sure thing: experiment is that you pick a number by selecting a ball from an urn;
the number written on the ball is the outcome...except that every ball has the same value.
What are sample spaces, etc?
(2) A binomial lattice: We are going to track the price S(t) of a stock through time,

which we think of as a random variable, with some simplifying assumptions:

(1) Times measured are discrete in a �xed unit (period), e.g., days. Thus, the only values
of S(t) are S = S0 = S(0) > 0, S1 = S(1), ..., Sn = S(n)

(2) At each stage, the stock will either move up with a return of u or move down with a
return of d and does so with probabilities p, q.

(3) Random moment-to-moment �uctuations in a noisy quantity are modeled by a normal
distribution of mean zero, variance dt (roughly the time between measurements) and scale
factor σ (called the volatility.)
Now let's focus on (3). Let X(t) be the function of random �uctuations that we are

interested in. What on earth does this symbol mean? Well, for each particular time t0,
X(t0) is a random variable. The whole ensemble X(t) of random variables is a stochastic
process (or random process.)
The sample space for X(t) is rather subtle: if we observe some statistic in time, e.g., a

stock price, we get a realization x(t) of X(t). Let's draw a rough picture of what such a
realization might look like: a very jagged graph that tends to move in a direction (up or
down.)
Now x(t) is just one function, and is super-highly discontinuous. But couldn't you imagine

another universe, where the sampling of X(t) led to a di�erent realization? Sure! And there
are in�nitely many such possibilities.
Now this idea is so general that it is entirely worthless without further quali�cations. So

what we are going to do is to examine changes in random variables

∆X = X(t + dt)−X(t).

However, we are going to do this in a �limiting� sense, that is, we will let dt diminish in
size and pass to �di�erentials� dX(t). This, too, is a stochastic process, and here is here we
will lay down some conditions. BTW, the formal development of this topic would work with
so-called stochastic integrals instead of di�erentials:

X(t + dt)−X(t) =

∫ t+dt

t

dX(t),

and though it is more rigorous, this is exactly what we are going to avoid. Just remember
that every di�erential assertion we make has a formal integral justi�cation.
Consider a random process X(t) which has �uctuation dX which has these properties.

Such a process is called Brownian motion:

(1) dX has a normal distribution function (for any t, dt.)
(2) the mean of dX is zero
(3) the variance of dX is dt.

Let's think about the intuitive content of each of these:

(1) We'll, that's because we love normal distributions and in the absence of additional
information, this is a reasonable approximation. In the absence of additional informa-
tion, there's no reason to think the distribution function at any one time is di�erent
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from that of some other time. (In statistics parlance, the r.v.'s X(t) are identically
distributed.

(2) We are talking about random �uctuations; so why should they prefer up to down?
Hence, expected value zero.

(3) If we sample at t and t + dt, we get a di�erence X(t + dt)−X(t) that has a certain
variability, which is nicely measured by the variance. If we cut the time lag in half,
isn't it reasonable to expect the variability of the di�erence to go down by a half?
That's essentially what condition 3 is saying, though it's a little stronger than that.

Let the r.v. φ have the standard normal distribution and we can write this as

dX = φ
√

dt.

Thus the random �uctuations that we consider here could be described as, when we add a
volatility factor σ,

σdX = σφ
√

dt

which is a normally distributed r.v. with mean zero and variance σ2dt.
Reason: Calculate

E [σdX] = σE [dX] = σ0 = 0

and
Var (σdX) = Var

(
σφ
√

dt
)

= σ2dt Var (φ) = σ2dt.

We seem to be a step ahead of ourselves in that so far, di�erentials of random variables has
presented in a very informal way. We don't really have a precise idea of what di�erentials
mean and how we would integrate them in the same way that we integrate ordinary di�er-
entials in calculus. Once we have the correct de�nitions in place, we'll see that Brownian
motion is essentially the same thing as a Wiener process, which we'll describe below.

6.2. Asset Price , Random Walks and Ito's Lemma. We think of the price of an asset
as random variable S(t) that moves with time. It's often stated that asset prices must move
randomly because of the e�cient market hypothesis, which basically says two things:

• Past history is fully re�ected in the present price, which does not hold any further
information.

• Markets respond immediately to any new information about an asset.

Thus modeling of prices is about modeling the arrival of new information which a�ects the
price. Unanticipated changes in the asset price can be modeled by a �Markov process� of
which the Wiener process we describe above is a special case.
Now were ready for a model of the price of a stock as a function of time, S(t). Understand:

S(t) is a stochastic process! If we sample this stochastic process at discrete points, say we
obtain end-of-day values S (t1) = S1, S (t2) = S2, etc., we obtain what is called a random
walk. Suppose that in a small increment of time dt the stock price experiences a change dS.
Note: we're using the di�erential as the �limiting� form for ∆S.
Rather than model S(t) itself, it makes more sense to think about relative changes, which

are exactly (well, nearly for small dt)
dS

S
.

Let's discuss the deterministic and random parts of what this expression should be.
Deterministic: µ dt, where µ is the relative rate of change of S with respect to time.

In the case of a bond you can think of µ as the (continuous) prevailing risk-free interest
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rate. For our stock, it is called the drift. This factor is determined by the prospects of the
company, quality of the management, etc.
Stochastic (random): σ dW , where the constant σ plays the role of a volatility factor.
Thus, the equation describing variations in return over time is

(2)
dS

S
= σ dW + µ dt.

This equation is an example of a stochastic di�erential equation.
Our objective is to solve this di�erential equation for S in some fashion. We could rewrite

it in an alternate form

(3) dS = σS dW + µS dt

What if there were no randomness?
We mean that σ = 0. Solve this ordinary di�erential equation and obtain the familiar

formula
S(t) = S(0)eµt.

O.K., now back to the real world.
Example. The di�erential dS is also a random variable. What is its mean and variance,

given today's price?
We'll calculate the mean at the board. Variance is left as an exercise.
There is a key fact that we'll need that is, at �rst glance, not very intuitive:
Key Fact:

dW 2 → dt as dt → 0.

We'll put an explanation of this o� for a moment and get to a really fundamental fact.
Ito's Lemma: Let f(S, t) be a smooth function and S the random variable given by

Equation (3). Then df is a random variable given by

(4) df = σS
∂f

∂S
dW +

(
µS

∂f

∂S
+

1

2
σ2S2 ∂2f

∂S2
+

∂f

∂t

)
dt

We can see why this is reasonable in steps:

(1) Start with Taylor's theorem for ∆f and calculate

∆f =
∂f

∂S
dS +

∂f

∂t
dt +

1

2

∂2f

∂S2
(dS)2 +

∂2f

∂t2
(dt)2 +

∂2f

∂S∂t
dS dt + · · ·

(2) Recall Tschebychev's inequality: For a random variable Y with �nite variance σ2 and
mean µ, and for k > 0,

P (|Y − µ| ≥ kσ) ≤ 1

k2

and note that dX2 = N2dt and N2 has a chi-squared distribution of mean 1 and
variance 2. Hence dX2 has mean dt and variance σ = 4dt2. Thus if we take k = 1/4dt,
we obtain

P
(∣∣dX2 − dt

∣∣ ≥ dt
)
≤ 16dt2

so that dX2 approaches dt in a probabilistic sense as dt → 0.
(3) Finally, substitute dS = σS dW + µS dt, and since we are letting dt → 0, replace ∆f

by df and dW 2 by dt, do some algebra and we're done.
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Note: (1) Ito's Lemma is actually a little more general than we stated it. It applies to
di�erentials

(5) dS = a(S, t)dW + b(S, t)dt.

yielding for f (S, t) the formula

df = b
∂f

∂S
dW +

(
a
∂f

∂S
+

1

2
b2 ∂2f

∂S2
+

∂f

∂t

)
dt

(2) Ito's Lemma underscores the di�erence between deterministic and random variables.
Were we dealing with deterministic variables and were given that we would simply have
plugged this into the formula of Equation (2), done a little algebra and obtained

df = σS
∂f

∂S
dW +

(
µS

∂f

∂S
+

∂f

∂t

)
dt

The di�erence comes from the Key Fact:

dW 2 → dt as dt → 0.

Take, e.g., ε =
√

dt.

6.3. Stochastic Integrals. Equation (3) has something really nice going for it: we can
actually integrate this stochastic di�erential equation. Before we do so, we need to inter-
pret these di�erentials. Here is a di�erential-free version Brownian motion W . A Wiener
process W (t) is a stochastic process that has the following properties:

(1) W (0) = 0 and W (t) has a normal distribution function for t > 0.
(2) The mean of W (t) is zero.
(3) The variance of the increment W (t)−W (s) is t− s for t > s.
(4) Increments over non-overlapping intervals are independent.

Let's think about the intuitive content of each of these:

(1) We'll, that's because we love normal distributions and in the absence of additional
information, this is a reasonable approximation. Also W (0) = 0 because we assume
that whatever process we are interested in is determined at the one instant in time
t = 0.

(2) We are talking about random �uctuations; so why should they prefer up to down?
Hence, expected value zero.

(3) If we sample at t and t + dt, we get a di�erence W (t + dt)−W (t) that has a certain
variability, which is nicely measured by the variance. If we cut the time lag in half,
isn't it reasonable to expect the variability of the di�erence to go down by a half?
That's essentially what condition 3 is saying, though it's a little stronger than that.

(4) This is a way of saying that past changes before time t has no e�ect on the change
W (s)−W (t), s > t.

Now if we look back to the de�nition of the Brownian motion dX we see how the properties
of this motion can be deduced from the limiting idea

W (t + dt)−W (t) → dW, as dt → 0.

For example, we required that dW have variance dt, which is exactly the variance of W (t +
dt)−W (t). The fact that each dW is normally distributed is a bit more subtle, as it requires
the Central Limit Theorem. We'll leave it at that.
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Before we try to integrate, let's have a look at the ACTUAL working de�nition of a
stochastic integral:
De�nition: Let W (t) be a Wiener process and b (W, t) a function of t and W . Then we

de�ne

Y (t)− Y (0) =

∫ t

0

b (W (τ) , τ ) dW (τ)

provided that Y (t) is a stochastic process de�ned by

Y (t)− Y (0) = lim
m→∞

m∑
j=0

b (W (tj) , tj) (W (tj+1)−W (tj))

where 0 = t0 < t1 < · · · < tm+1 = t and maxj (tj+1 − tj) → 0 as m →∞. This integral with
respect to a Wiener process is called an Ito stochastic integral.
Notice, I haven't said what these limits mean. Nonetheless, it's pretty clear from de�nition

that the ordinary properties of the integrals from calculus, like linearity, hold for this object.
Now we can interpret the meaning of the di�erential expression

dY = a (W, t) dt + b (W, t) dW,

namely, we understand that this means that the stochastic process Y (t) satis�es the integral
equation

Y (t)− Y (0) =

∫ t

0

a (X, t) dt +

∫ t

0

b (X, t) dW

where W (t) is a Wiener process and the second integral is the Ito stochastic integral.
This de�nition is good enough to calculate one integral:

W (t)−W (0) =

∫ t

0

1dW.

Let's do it....Warning: most stochastic integrals are MUCH tougher than this and the answers
are not quite the ones we might expect.
Now handle df , where f (S, t) = ln (S): we'll get from Ito's Lemma that

ln (S(t))− ln (S(0)) = σ (W (t)−W (0)) +

(
µ− 1

2
σ2

)
t.

Now W is a Wiener process, so W (0) = 0 and W (t) is a normally distributed r.v. with
mean zero and variance t. This says that if S(0) = S0 is given, then ln (S(t)) is the sum of
a constant and a normal distribution W (t)−W (0) = W (t) of variance t− 0 = t. Thus, we
have σW (t) = σ

√
tz, where z ∼ N (0, 1). It also implies that if we set ν = µ− 1

2
σ2, then we

can take exponentials of the above equation and obtain

S (t) = S (0) eνt+σ
√

t·z.

We'll calculate

E [ln (S(t))] =

(
µ− 1

2
σ2

)
t + S(0)

and

Var (ln (S(t))) = σ2t.
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Therefore, the probability density function for S(t) is

fS(s) =
1

σ
√

2πt
e−(ln s−((µ− 1

2
σ2)t+S(0)))/(2σ2t).

When a r.v. Y is such that ln Y is normally distributed, we say that Y is lognormally
distributed. Thus, stock price at a given time is modeled as a lognormal random variable.
See Appendix B for a discussion.


