
A TOUR OF LINEAR ALGEBRA FOR JDEP 384H

Contents

Solving Systems 1
Matrix Arithmetic 3
The Basic Rules of Matrix Arithmetic 4
Norms and Dot Products 5
Norms 5
Dot Products 6
Linear Programming 7
Eigenvectors and Eigenvalues 9

Solving Systems

Solving linear systems is a fundamental activity, practiced from high
school forward. Recall that a linear equation is one of the form

a1x1 + a2x2 + · · ·+ anxn = b,

where x1, x2, . . . , xn are the variables and a1, a2, . . . , an, b are known
constants. A linear system is a collection of linear equations, and a
solution to the linear system is a choice of the variables that satis�es
every equation in the system. What can we expect?
Example 6. Use geometry to answer the question with one or more

equations in 2 unknowns. Ditto 3 unknowns.
Basic Fact (Number of Solutions): A linear system of m equa-

tions in n unknowns is either inconsistent (no solutions) or consistent,
in which case it either has a unique solution or in�nitely many solu-
tions. In the former case, unknowns cannot exceed equations. If the
number of equations exceeds the number of unknowns, the system is
called overdetermined. If the number of unknowns exceeds the num-
ber of equations, the system is called underdetermined.
While we're on this topic, let's review some basic linear algebra as

well:
1

A TOUR OF LINEAR ALGEBRA FOR JDEP 384H 2

The general form for a linear system of m equations in the n un-
knowns x1, x2, . . . , xn is

a11x1 + a12x2 + · · ·+ a1jxj + · · · a1nxn = b1

a21x1 + a22x2 + · · ·+ a2jxj + · · · a2nxn = b2

...
...

...

ai1x1 + ai2x2 + · · ·+ aijxj + · · · ainxn = bi

...
...

...

am1x1 + am2x2 + · · ·+ amjxj + · · · amnxn = bm

Notice how the coe�cients are indexed: in the ith row the coe�cient
of the jth variable, xj, is the number aij, and the right hand side of
the ith equation is bi.
The statement �A = [aij]� means that A is a matrix (rectangular

table of numbers) whose (i, j)th entry, i.e., entry in the ith row and jth
column, is denoted by aij. Generally, the size of A will be clear from
context. If we want to indicate that A is an m× n matrix, we write

A = [aij]m,n.

Similarly, the statement �b = [bi]� means that b is a column vector
(matrix with exactly one column) whose ith entry is denoted by bi, and
�c = [cj]� means that c is a row vector (matrix with exactly one row)
whose jth entry is denoted by cj. In case the type of the vector (row
or column) is not clear from context, the default is a column vector.
How can we describe the matrices of the general linear system de-

scribed above? First, there is the m× n coe�cient matrix

A =



a11 a12 · · · a1j · · · a1n

a21 a22 · · · a2j · · · a2n
...

...
...

...
ai1 ai2 · · · aij · · · ain
...

...
...

...
am1 am2 · · · amj · · · amn


Notice that the way we subscripted entries of this matrix is really very
descriptive: the �rst index indicates the row position of the entry and
the second, the column position of the entry. Next, there is the m× 1

A TOUR OF LINEAR ALGEBRA FOR JDEP 384H 3

right hand side vector of constants

b =



b1

b2
...
bi
...

bm


Finally, stack this matrix and vector along side each other (we use a
vertical bar below to separate the two symbols) to obtain the m×(n+1)
augmented matrix

Ã = [A | b] =



a11 a12 · · · a1j · · · a1n b1

a21 a22 · · · a2j · · · a2n b2
...

...
...

...
...

ai1 ai2 · · · aij · · · ain bi
...

...
...

...
...

am1 am2 · · · amj · · · amn bm



Matrix Arithmetic

Given any two matrices (or vectors) A = [aij] and B = [bij] of the
same size, we may add them or multiply by a scalar according to the
rules

A + B = [aij + bij]

and

cA = [caij] .

For each size m × n we can form a zero matrix of size m × n: just
use zero for every entry. This is a handy matrix for matrix arithmetic.
Matlab knows all about these arithmetic operations, as we saw in our
Matlab introduction. Moreover, there is a multiplication of matrices A
and B provided that A is m× p and B is p×n. The result is an m×n
matrix given by the formula

AB =

[
p∑

k=1

aikbkj

]
.

Again, Matlab knows all about matrix multiplication.

A TOUR OF LINEAR ALGEBRA FOR JDEP 384H 4

The Basic Rules of Matrix Arithmetic. There are many algebra
rules for matrix arithmetic. We won't review all of them here, but
one noteworthy fact is that matrix multiplication is not commutative:
AB 6= BA in general. Another is that there is no general cancellation
of matrices: if AB = 0. Another is that there is an identity matrix
for any square size n×n: In is the matrix with ones down the diagonal
entries and zeros elsewhere. For example,

I3 =

 1 0 0
0 1 0
0 0 1

 .

We normally just write I and n should be clear from context. Algebra
fact: if A is m× n and B is n×m , then AI = A and IB = B.
One of the main virtues of matrix multiplication is that is gives us

a symbolic way of representing the general linear system given above,
namely, we can put it in the simple looking form

Ax = b,

where A and b are given as above, namely

Ax = b,

where

x =



x1

x2
...
xi
...

xn


is the (column) vector of unknowns. Actually, this is putting the cart
before the horse because this idea actually inspires the whole notion of
matrix multiplication. This form suggests a way of thinking about the
solution to the system, namely,

x =
b

A
.

The only problem is that this doesn't quite make sense in the matrix
world. But we can make it sensible by a little matrix algebra: imagine
that there were a multiplicative inverse matrix A−1 for A, that is, a
matrix such that

A−1A = I = AA−1.

A TOUR OF LINEAR ALGEBRA FOR JDEP 384H 5

Then we could multiply both sides of Ax = b on the left by A−1 and
obtain that

x = A−1b.

Matlab represents this equation by
x = A\b
In general, a square matrix A may not have an inverse. One condition

for an inverse to exist is that the matrix have nonzero determinant,
where this is a number associated with a matrix such as one saw in
high school algebra with Cramer's rule. We won't go into details here.
Of course, Matlab knows all about inverses and we can compute the
inverse of A by issuing the commands A^(-1) or inv(A). In fact, Matlab
even knows many more subtle matrix constructions. For example, try
evaluating B= A^(1/2) and follow it with B*B.
Sets of all matrices or vectors of a given size form �number systems�

with a scalar multiplication and addition operation that satis�es a list
of basic laws. Such a system is a vector space. For example, for
vectors from R3 , we have operations a1

a2

a3

 +

 b1

b2

b3

 =

 a1 + b1

a2 + b2

a3 + b3


c

 a1

a2

a3

 =

 ca1

ca2

ca3


and similar operations for n-vectors of the vector space Rn or the vector
space of n× n matrices Rn×n.

Norms and Dot Products

Norms. Before we get started, there are some useful ideas that we
need to explore. We already know how to measure the size of a scalar
(number) quantity x: use |x| as a measure of its size. Thus, we have
a way of thinking about things like the size of an error. Now suppose
we are dealing with vectors and matrices.
Question: How do we measure the size of more complex quantities

like vectors or matrices?
Answer: We use some kind of yardstick called a norm that assigns

to each vector x a non-negative number ‖x‖ subject to the following
norm laws for arbitrary vectors x,y and scalar c:

• For x 6= 0, ‖x‖ > 0 and for x = 0, ‖x‖ = 0.
• ‖cx‖ = |c| ‖x‖.
• ‖x + y‖ ≤ ‖x‖+ ‖y‖.

A TOUR OF LINEAR ALGEBRA FOR JDEP 384H 6

Examples: For vector space Rn and vector x = [x1, x2; . . . ; xn],

• 1-norm: ‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|
• 2-norm (the default norm):

‖x‖2 =
(
x2

1 + x2
2 + · · ·+ x2

n

)1/2

• ∞-norm:‖x‖∞ = max (|x1| , |x2| , · · · , |xn|)
Let's do some examples in Matlab, which knows all of these norms:
>x=[1;-3;2;-1], y=[2;0;-1;2]

>norm(x)
>norm(x,1)
>norm(x,2)
>norm(x,inf)
>norm(-2*x),abs(-2)*norm(x)
>norm(x+y),norm(x)+norm(y)
Matrix Norms: For every vector norm ‖x‖ of n-vectors there is a

corresponding induced norm on the vector space of n × n matrices A
by the formula

‖A‖ = max
x6=0

‖Ax‖
‖x‖

= max
‖x‖=1

‖Ax‖ .

These induced norms satisfy all the basic norm laws and, in addition:

‖Ax‖ ≤ ‖A‖ ‖x‖ (compatible norms)

‖AB‖ ≤ ‖A‖ ‖B‖ (multiplicative norm)

One can show directly that if A = [aij], then

• ‖A‖1 = max
1≤j≤n

n∑
i=1

|aij|

• ‖A‖2 =
√

ρ (AT A), where ρ(B) is largest eigenvalue of square
matrix B in absolute value.

• ‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij|

Dot Products. The 2-norm is special. It can be derived from another
operation on vectors called the dot product. Here is how it works.

De�nition. The dot product of vectors u,v in Rn is the scalar

u · v = uTv.

This operation satis�es a long list of properties, called the inner product
properties:

• u · u ≥ 0 with equality if and only if u = 0.

A TOUR OF LINEAR ALGEBRA FOR JDEP 384H 7

• u · v = v · u
• u · (v + w) = u · v + u ·w
• c (u · v) = (cu) · v

What really makes this idea important are the following facts. Here
we understand that ‖u‖ means the 2-norm ‖u‖2.

•
‖u‖ =

√
u · u

• If θ is an angle between the vectors represented in suitable co-
ordinate space, then

u · v = ‖u‖ ‖u‖ cos θ.

• Once we have the idea of angle between vectors, we can speak
of orthogonal (perpendicular) vectors, i.e., vectors for which
the angle between them is π/2 (90◦).

• Given any two vectors u,v, with v 6= 0, the formula

projv u =
u · v
v · v

v

de�nes a vector parallel to v such that u−projv u is orthogonal
to v.

Linear Programming

Here we understand that a vector inequality like x ≥ 0 is satis�ed if
the inequality is satis�ed in each coordinate.
With this notation we can express a general linear programming prob-

lem as follows:
(LP) Find a value of x that minimizes the linear function f (x) = cTx

subject to conditions that Ax ≥ b, Bx = c and x ≥ 0.
A somewhat restricted form is a linear programming problem in

canonical form:
(CLP) Find a value of x that minimizes the linear function f (x) = cTx

subject to conditions that Ax ≥ b and x ≥ 0.
Notes:

(1) The problem (CLP) is an optimization problem because its ob-
jective is the �nd an extremum (maximum or minimum) of a
scalar function.

(2) The problem is in canonical form if it is expressed as above
or is a maximization problem or has inequalities the other way:
Ax ≤ b.

(3) The function f (x) = cTx is called the objective function.
(4) The variables that occur in f (x), i.e., the coordinates of x, are

called decision variables.

A TOUR OF LINEAR ALGEBRA FOR JDEP 384H 8

(5) The set of all vectors x that satisfy the constraints is called the
feasible set.

A linear programming problem is said to be in standard form if the
only inequalities are simple ones of the form x ≥ 0 and all other con-
straints on the variables are linear equalities. So such a linear program-
ming problem takes the form

(SLP) Find a value of x that minimizes the linear function f (x) = cTx
subject to conditions that Ax = b and x ≥ 0.
In a sense all the problems thus far expressed are equivalent because

one form can be put into another with the following tricks:

(1) A linear inequality like 2x1+x2 ≤ 4 is turned into an equality by
adding in a nonnegative �slack� variable x3 to get 2x1+x2+x3 =
4 at the price of adding one new variable.

(2) An inequality going the �wrong� way like 2x1+x2 ≥ 4 is straight-
ened out by multiplying by −1 to obtain −2x1−x2 ≤ −4. Now
add in a slack variable as in 1.

(3) Another way to handle a �wrong� way linear inequality is to sub-
tract a nonnegative �surplus� variable x3 to obtain the equality
2x1 + x2 − x3 = 4.

(4) An equality like x1 + x2 = 3 is turned into an inequality by
replacing the equation by two inequalities x1 + x2 ≤ 3 and
−x1 − x2 ≤ −3.

(5) A maximization problem like maximizing 0.06x1 + 0.08x2 is
equivalent to minimizing the negative of the objective function,
i.e., minimize −0.06x1 − 0.08x2.

In general, it is not clear that a linear programming problem even has
a solution. If there is a solution, then there is one that occurs on the
boundary of the feasible set and more speci�cally, at a �corner� (called
an extreme point) of the feasible set. Such a solution is called a basic
feasible solution. The three possible outcomes are the following:

(1) The feasible set is empty. In this case there is no solution to
the linear programming problem.

(2) There are feasible points, but no optimum for the objective
function. If this happens, the feasible set is unbounded and we
can make the objective function arbitrarily large (in the case of
searching for a maximum) by moving along an unbounded line
in the feasible set.

(3) The problem has a solution. This always happens when the
feasible set is nonempty and bounded, but it may also happen
if the feasible set is unbounded. However, there are exactly
two possibilities: a unique solution or in�nitely many solutions.

A TOUR OF LINEAR ALGEBRA FOR JDEP 384H 9

In the latter case, every solution can be expressed as a linear
combination of basic feasible solutions.

Generally, the solution of (LP) or discovery there is none follows two
steps if the so-called simplex method is used:

• Phase I: �nd a basic feasible solution. If none is found, conclude
the feasible set is empty and there is no solution.

• Phase II: �nd an optimal basic feasible solution by moving from
one to another that reduces the objective function, or conclude
that function values are unbounded and there is no solution.

Other methods for solving (LP) problems that have gained popular-
ity in recent years are the so-called interior point methods. They
involve ideas from non-linear optimization and are rather more sophis-
ticated than the simplex method. In contrast, the simplex method is
simple to understand and has stood the test of time fairly well. It is
still the method of choice for small to medium sized linear programming
problems.

Eigenvectors and Eigenvalues

An eigenvalue for a square n×n matrix A is a number λ such that
for some NONZERO vector x, called an eigenvector for λ,

Ax = λx.

Eigenvalue Facts:

(1) The eigenvalues of A are precisely the roots of the nth degree
polynomial

p (λ) = |λI − A| ,
where || denotes determinant.

(2) An n × n matrix A has exactly n eigenvalues, counting multi-
plicities and complex numbers.

(3) The eigenvalues of αI + βA are just α + βλ, where λ runs over
the eigenvalues of A.

(4) More generally, if r(λ) = p(λ)/q(λ) is any rational function,
i.e., p, q are polynomials, then the eigenvalues of r(A) are r(λ),
where λ runs over the eigenvalues of A, provided both expres-
sions make sense.

(5) The spectral radius of A is just

ρ (A) = max{|λ| |λ is an eigenvalue of A}

(6) Suppose that x0 is an arbitrary initial vector, {bk} is an arbi-
trary sequence of uniformly bounded vectors, and the sequence

A TOUR OF LINEAR ALGEBRA FOR JDEP 384H 10

{xk}, k = 0, 1, 2, . . . , is given by the formula

xk+1 = Axk + bk.

If ρ(A) < 1, then {xk} is a uniformly bounded sequence of
vectors. Such a matrix A is called a stable matrix.

(7) If ρ(A) > 1, then {xk} will not be uniformly bounded for some
choices of x0.

(8) (Principal Axes Theorem) If A is a (real) symmetric ma-
trix, then there exists an orthogonal matrix P (this means that
P−1 = P T) such that P−1AP = D, a diagonal matrix with real
entries. Speci�cally, the diagonal entries of D are the eigen-
values of A and the columns of P form an orthogonal set of
unit-length eigenvectors of A.

(9) (Spectral Decomposition Theorem) If A is a (real) sym-
metric matrix, with eigenvalues λ1, λ2, . . . , λn and correspond-
ing unit-length orthogonal eigenvectors e1, e2, . . . , en, then

A = λ1e1e
T
1 + λ2e2e

T
2 + · · ·+ λnene

T
n

.

Let's do a few calculations with matrices to illustrate the idea of eigen-
values and eigenvectors in Matlab, which knows all about these quan-
tities.
> A = [3 1 0;-1 3 1;0 3 -2]

> eig(A)
> eig(A)
> [V,D]=eig(A)
> v = V(:,1),lam = D(1,1)
> A*v,lam*v
> x = [1;-2;3]
> b = [2;1;0]
> x = A*x+b % repeat this line
Now let's demonstrate boundedness of an arbitrary sequence as above.

Try the same with a suitable A.
> A = A/4

> max(abs(eig(A)))
> x = [1;-2;3]
> x = A*x+b % repeat this line
Finally, let's �nd the orthogonal diagonalization guaranteed by the

principal axes theorem for a symmetric matrix.
> A = A'*A % need a symmetric matrix..this one's SPD

> [P,D] = eig(A)
> P' - P^(-1) % test for P'=P^(-1)

A TOUR OF LINEAR ALGEBRA FOR JDEP 384H 11

> e = P(:,1)
> % confirm the spectral decomposition theorem
> lambda1 = D(1,1),lambda2 = D(2,2),lambda3 = D(3,3)
> e1 = P(:,1),e2 = P(:,2),e3 = P(:,3)
> lambda1*e1*e1'+lambda2*e2*e2'+lambda3*e3*e3' - A

