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Rates of Change and Derivatives

Life would be simple if every function were a constant. It isn't and
they aren't. Calculus allows us to get a handle on how functions change
with their argument. Recall this de�nition.

De�nition. A function f is a rule of correspondence that assigns to
each element x in a set D, called its domain, a unique value f (x) in a
set R, called its range (or target). We write f : D → R in this situation

Example. Let D = [0, 5], the interval of real numbers x ∈ R such that
−π ≤ x ≤ π, and de�ne a function f : D → R by the formula

f (x) =
3

1 + x2
+ 2x.

Certainly this formula yields one and only one well-de�ned value f (x)
for each choice of x. (There is something to check: could the denomi-
nator be zero for some x in D? Answer is no.) So we have a function.

This function could be a model of, for example, total cost for a
certain product as a function of output x. We are interested in how
this function changes with x. A traditional de�nition of marginal cost
says that it is the additional costs incurred by the production of one
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additional unit of the product. Thus the marginal costs at production
level x are

f (x + 1)− f (x) =
f (x + 1)− f (x)

1
=

f (x + ∆x)− f (x)

∆x
, ∆x = 1.

This is just a step away from the calculus de�nition of marginal cost,
namely, the derivative of f (x) at x de�ned by

f ′ (x) =
df

dx
(x) = lim

∆x→0

f (x + ∆x)− f (x)

∆x
.

Recall that the derivative has another interpretation, more geomet-
rical in nature, namely, f ′ (a) is the slope of the tangent line

y = f ′ (a) (x− a) + f(a)

to the curve y = f (x) at the point (a, f (a)) on the curve. Observe
that this tangent line is really a limit of secant lines of the form

y =
f (a + h)− f (a)

h
(x− a) + f (a)

where we let h → 0. See the �gure below for a comparison.
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y

y = f ′(a)(x− a) + f(a)

y = f(x)

y = f(a+∆x)−f(a)
∆x

(x− a) + f(a)

a a + ∆x

∆f
∆x

df

As we know (and won't give too much detail here) there are many
useful rules of di�erentiation, e.g., for given functions f (x) , g (x) and
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constants a, b, n,

(af (x) + bg (x))′ = af ′ (x) + bg′ (x)

(f (x) g (x))′ = f (x) g′ (x) + f ′ (x) g (x)(
f (x)

g (x)

)′

=
g (x) f ′ (x)− f (x) g′ (x)

g (x)2

f (g (x))′ = f ′ (g(x)) g′ (x)

(xn)′ = nxn−1

(ex)′ = ex

(ln (x))′ =
1

x
(sin (x))′ = cos (x)

(cos (x))′ = − sin (x)

(arctan (x))′ =
1

1 + x2

and so forth. Recall that F (x) is an antiderivative of f (x) if F ′ (x) =
f (x). Any two antiderivatives of f (x) di�er by a constant, so a general
formula for the antiderivatives of f (x) is given by∫

f (x) dx = F (x) + C,

where C is a constant of integration. Thus, each derivative formula
gives rise to an antiderivative formula. For example, the last derivative
formula above implies that∫

1

1 + x2
dx = arctan (x) + C.

Example. Find an equation of the tangent line to the curve

f (x) =
3

1 + x2
+ 2x

at the point on the curve where x = 3.
Solution. First use the derivative properties to calculate

f ′ (x) =

(
3

1 + x2

)′

+ (2x)′ = − 6x

(1 + x2)2 + 2.

Evaluate and �nd that f (3) = 6.3, f ′ (3) = 1.82, so that the tangent
line is given by

y = 1.82 (x− 3) + 6.3 = 1.82x + 0.84.
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Differentials

Take a closer look at the de�nition of derivative. We can think of
the rate of change over the interval [a, a + h] given by

∆f

∆x
=

f (a + ∆x)− f (a)

∆x

as an approximation to the derivative f ′ (a). Or, if we are really inter-
ested in a subsequent value f (a + ∆x) beyond a given f (a), we can
think of the derivative as giving an approximation to ∆f by way of the
formula

∆f ≈ df ≡ f ′ (a) dx

where we take ∆x = dx. The quantity df de�ned in the above equality
is called the di�erential of f (x) at x = a. In general, we de�ne

df = df (x, dx) ≡ f ′ (x) dx.

The di�erential is really a function of the independent variables x and
dx.There is a nice geometrical picture that one can draw that shows
that we obtain the values df and ∆f from the tangent and secant
curves at x. For small values of dx the di�erential provides an excellent
approximation to ∆f and conversely. Refer to the �gure above and
identify ∆f and df in the picture.

Example. Use the calculations of the previous example to approximate
f (2) and f (4) using di�erentials and the values of f, f ′at x = 3.

Solution. We obtain that with dx = 1,

∆f = f (3 + dx)− f (3) ≈ df (3, 1) = f ′ (3) 1 = 1.82,

so that

f (3 + 1) ≈ f (3) + 1.82 = 8.12.

As a matter of fact, f (4) = 4.1765.
For dx = −1, we obtain similarly that

∆f = f (3 + dx)− f (3) ≈ df (3, 1) (−1) = −1.82,

so that

f (3− 1) ≈ f (3)− 1.82 = 4.48.

As a matter of fact, f (4) = 8.175 and f (2) = 4.2.

Approximating values with di�erentials amounts to using a linear
approximation to f (x) which is increasingly accurate near x = a. The
idea is that for x near a,

f (x) ≈ f (a) + f ′ (a) (x− a) .



A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H 5

One can apply this argument to higher derivatives and integrate (next
section) to obtain the famous Taylor formula

f (x) ≈ f (a)+f ′ (a) (x− a)+f ′′ (a)
(x− a)2

2!
+· · ·+f (n) (a)

(x− a)n

n!
≡ Pn (x) .

In fact the error of approximation is well understood. One form of it is

Rn (x) ≡ f (x)− Pn (x) = f (n+1) (ξ)
(x− a)n+1

(n + 1)!
,

where ξ is some number between a and x.

Area and Integrals

Let A (x) be the signed area between the curve y = f (x) and the
x-axis, with vertical line boundaries at x = a and x. Thus A (a) = 0.
We also write

A (x) =

∫ x

a

f (x) dx.

This is motivated by the approximate equality

A (x + dx)− A (x) ≈ f (x) dx

whose accuracy increases to equality as dx → 0. A graph of the area
shows why this is so, so examine the following �gure.
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y = f(x)

(x, f(x))

x x + ∆x

A(x)

a

If we divide by dx and pass to the limit, we see that

d

dx
A (x) = f (x) .

This is one form of the fundamental theorem of calculus (FTOC). The
other form follows from this argument: As we saw earlier, any two
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antiderivatives of f (x) di�er by a constant, so if F ′ (x) = f (x), then
F (x) + C = A (x), where C is some constant. It follows that∫ b

a

f (x) dx = A (b) = A (b)−A (a) = (F (b) + C)−(F (a) + C) = F (b)−F (a) ,

which gives the second form of FTOC: If F ′ (x) = f (x) is continuous
on the interval [a, b], then∫ b

a

f (x) dx = F (b)− F (a) ≡ F (x)| b
x=a

Example. Let f (x)be as in the �rst example, and calculate
∫ 4

0
f (x) dx.

Solution. Here we have to �nd an antiderivative f (x) which we
write in the customary inde�nite integral form F (x) =

∫
f (x) dx. We

leave it to the reader to check that∫ (
3

1 + x2
+ 2x

)
dx = 3

∫
dx

1 + x2
+2

∫
x dx = 3 arctan (x)+2

x2

2
+C

where C is an arbitrary constant of integration. From this we deduce
that ∫ 4

0

(
3

1 + x2
+ 2x

)
dx = 3 arctan (x) + x2

∣∣4
x=0

≈ 19.977.

Perhaps the �rst form of the de�nite integral that you saw was as
a limit of Riemann sums, of which the following is a special case: Let
a = x0 < x1 · · · < xN = b with xj+1 − xj = ∆x ≡ b−a

N∫ b

a

f (x) dx = lim
∆x→0

N−1∑
j=0

f (xj) ∆x.

Of course, this again gives us the signed area between y = f (x) and the
x-axis. This is a left Riemann sum. The corresponding right Riemann
sum is

∑N
j=1 f (xj) ∆x. A rather fortunate turn of events occurs when

we average the left and right Riemann sums for a given N .

Multivariate Calculus

Life would be simpler if all functions involved one variable. They
don't. For example, the volume of a right circular cylinder of radius x
and height y is a function of two variables

f (x, y) = πx2y.

Here we understand that the domain of the function V consists of points
(x, y) such that x and y are non-negative. How do we make sense of
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rates of change of such variables when there are two (or more!) inde-
pendent variables. The answer is that we take derivatives with respect
to each independent variable separately, treating all other variables as
constant, and use our single variable rules. Such derivatives are partial

derivatives since they only tell us part of the rate of change information
about f . Thus, in our example,

∂f

∂x
(x, y) = 2πxy

∂f

∂y
(x, y) = πx2.

There is a nice interpretation of these derivatives as simply ordinary
derivatives of functions of one variable obtained by intersection the
surface z = f (x, y) with vertical planes parallel to the x- or y-axes.
Similarly, there are higher analogues of integrals and di�erentials.

We won't go into detail here, but in a nutshell, the double integral over
a region R in the xy-plane of a continuous function f (x, y) de�ned on
that region is a number ∫∫

R

f (x, y) dA

that represents the signed volume between the graph of z = f (x, y),
(x, y) ∈ R and the xy-plane with vertical sides along the boundary of
R.
Finally, there is the important idea of di�erentials for functions of

more than one variable. Just as di�erentials represent tangent line
approximations to a curve y = f (x), di�erentials for a function of
two variables represent tangent plane approximations to a surface z =
f (x, y). Here is the de�nition of di�erential for a function f (x, y) of
two variables with continuous partial derivative:

df =
∂f

∂x
dx +

∂f

∂y
dy.

This de�nition is completely analogous to di�erentials in one variable.
It should be noted that df is really a function of the four independent
variables x, y, dx and dy.
Just for the record, the de�nition above gives rise to a kind of chain

rule for certain functions of two arguments. Suppose that we know
that x = x (t) and y = y (t) are both functions of t, so that f =
f (x (t) , y (t))is really a function of the single independent variable t.
Then what is df/dt? The answer is a chain rule for a function of t that
has two intermediate variables x, y:
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df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
.

Example. Given that f (x, y) = x2y + y3 + x2, �nd a formula for
the di�erential df and in particular, for the di�erential evaluated at
x = 2, y = 1. How does this help you describe the tangent plane
approximation to z = f (x, y) for (x, y) near the point (2, 1)?

Solution. In this case, ∂f/∂x = 2xy + 2x and ∂f/∂y = x2 + 3y2.
Therefore, we have

df =
∂f

∂x
dx +

∂f

∂y
dy = (2xy + 2x) dx +

(
x2 + 3y2

)
dy

so that
df (2, 3, dx, dy) = 8dx + 7dy.

In particular, if we take dx = x − 2 and dy = 1, then we obtain the
expression

df = 8 (x− 2) + 7 (y − 1)

and if we interpret df ≈ ∆f for points (x, y) near (2, 1), then we obtain
the expression f (x, y) ≈ z, where

z − f (2, 1) = z − 9 = 8 (x− 2) + 7 (y − 1) ,

that is,
z = 8x + 7y − 14,

which is a plane containing the point (2, 1, f (2, 1)) and is in fact the
equation of the tangent plane to the surface at (2, 1, 9).


