Math 902
Homework # 4
Due: Friday, March 4th

Except in Problem # 5, \(R \) denotes a commutative ring with identity.

1. Let \(M \) be a flat \(R \)-module. Prove the following conditions are equivalent. (If \(M \) satisfies either of these conditions, \(M \) is said to be \textit{faithfully flat}.)

 (a) For every nonzero \(R \)-module \(N \) we have \(M \otimes_R N \neq 0 \).
 (b) For every maximal ideal \(m \) of \(R \) we have \(M \neq mM \).

2. Let \(N \) be an \(R \)-module. Prove that \(\text{Hom}_R(\cdot, N) \) is left exact.

3. Let \(T \) be a (commutative) \(R \)-algebra and \(M \) an \(R \)-module.

 (a) Prove that if \(M \) is projective, \(T \otimes_R M \) is a projective \(T \)-module.
 (b) Prove that if \(M \) is flat, \(T \otimes_R M \) is a flat \(T \)-module.

4. In the context of the Five-Lemma, prove that the middle map is surjective.

5. Let \(R \) be a (not necessarily commutative) ring. Prove that the following conditions are equivalent:

 (a) \(R \) is semisimple.
 (b) Every left \(R \)-module is projective.
 (c) Every left \(R \)-module is injective.