1. Let $\rho : G \to \text{GL}_n(\mathbb{C})$ be a complex representation of a finite group G and χ its associated character. Prove that $|\chi(g)| = \chi(1)$ if and only if $\rho(g) = \lambda I$ for some root of unity λ.

2. Let $G \neq 1$ be a finite group. Prove that G is simple if and only if for all irreducible complex characters χ of G and for all $g \neq 1$ one has $\chi(g) \neq \chi(1)$.

3. Let G be a finite group and G' its commutator subgroup. Prove that the number of complex linear (i.e., degree 1) characters of G is $[G : G']$.

4. Let k be a field of characteristic $p > 0$ and R a finite-dimensional k-algebra. Let M be a simple (left) R-module such that p does not divide $\dim_k M$. Prove that $\chi_M \neq 0$.

5. Let $\rho : G \to \text{GL}_k(V)$ be a k-linear representation of a finite group G.

 (a) Prove that if $\rho(G)$ spans $\text{End}_k(V)$ as a k-vector space then ρ is irreducible.

 (b) Prove that the converse to part (a) holds if k is algebraically closed and V is finite dimensional.

 (c) Let $G = C_4$ and $F = \mathbb{R}$. Show that G has an irreducible \mathbb{R}-representation ρ of degree 2 and the span of $\rho(G)$ is a proper subspace of $M_2(\mathbb{R})$.

6. Find the character table (over \mathbb{C}) for D_8, the dihedral group of order 8.

7. Let G be a finite group.

 (a) For $g, h \in G$ prove that g and h are in the same conjugacy class of G if and only if $\chi(g) = \chi(h)$ for every irreducible complex character χ of G.

 (b) Prove that g is conjugate to g^{-1} if and only if $\chi(g) \in \mathbb{R}$ for every irreducible complex character χ of G.

8. Let ρ be a \mathbb{C}-linear representation of a finite group G and χ its associated character. Suppose

 $$\frac{1}{|G|} \sum_{g \in G} |\chi(g)|^2 = 3.$$

 Prove that ρ is the direct sum of three distinct irreducible representations.