1. Prove that R is a division ring if and only if R has only two left ideals.

Solution: Suppose R is a division ring and I is a nonzero left ideal. Let $x \in I$, $x \neq 0$. Then $r = (rx^{-1})x \in I$ for every $r \in R$. Hence, $R = I$. Thus, R has exactly two left ideals.

Suppose now that R has only two left ideals (namely, (0) and R). Let $x \in R$, $x \neq 0$. Then $Rx = R$, so there exists $y \in R$ such that $yx = 1$. Similarly, $Ry = R$, so there exists $z \in R$ such that $zy = 1$. Then $x = (zy)x = z(yx) = z$. Thus, $xy = 1 = yx$ and x is invertible. Consequently, R is a division ring.

2. Prove that a left Artinian domain is a division ring.

Solution: Let $x \in R$, $x \neq 0$. Consider the descending chain of left ideals $Rx \supseteq Rx^2 \supseteq Rx^3 \supseteq \cdots$. As R is left Artinian, we have $Rx^n = Rx^{n+1}$ for some n. Hence, $x^n = rx^{n+1}$ for some $r \in R$; equivalently, $(1 - rx)x^n = 0$. As R is a domain, we can cancel x^n and obtain $1 = rx$; i.e., x is left invertible. Since x was an arbitrary nonzero element, this implies that R has only two left ideals. By Problem #1, R is a division ring.

3. A ring R is called Dedekind-finite if for all $a, b \in R$, $ab = 1$ implies $ba = 1$.

(a) Prove that any domain is Dedekind-finite.

Solution: Suppose $ab = 1$. Then $(ba - 1)b = 0$. Since $b \neq 0$, this implies that $ba - 1 = 0$, so $ba = 1$.

(b) Prove that if R is left Noetherian then R is Dedekind-finite. (Hint: It might help to first prove that any surjective endomorphism of a left Noetherian module is an isomorphism.)

Solution: We first prove that statement in the Hint. Let $\phi : M \to M$ be a surjective homomorphism, where M is a Noetherian left R-module. Consider the ascending chain of left submodules of M: $\ker \phi \subseteq \ker \phi^2 \subseteq \ker \phi^3 \subseteq \cdots$. Then there exists an n such that $\ker \phi^n = \ker \phi^{n+i}$ for all $i \geq 0$. In particular, $\ker \phi^n = \ker \phi^{2n}$. Note that ϕ^n is a surjective homomorphism and that if we prove ϕ^n is injective, so is ϕ. Thus, by replacing ϕ^n with ϕ, we may assume without loss of generality that $\ker \phi = \ker \phi^2$. Let $x \in \ker \phi$. As ϕ is surjective, $x = \phi(y)$ for some $y \in M$. Then $\phi^2(y) = \phi(x) = 0$, so $y \in \ker \phi^2 = \ker \phi$. Hence, $x = \phi(y) = 0$. Thus, $\ker \phi = \{0\}$ and ϕ is injective.

Now, suppose R is left Noetherian and $ab = 1$ for some $a, b \in R$. Consider the left R-module homomorphism $\phi : R \to R$ given by $\phi(r) = rb$. Since $\phi(ra) = rab = r$ for every $r \in R$, we see that ϕ is surjective. Hence, by the Hint, ϕ is an injective. As $\phi(ba) = bab = b = \phi(1)$, we conclude that $ba = 1$. Hence, R is Dedekind-finite.
4. Let $S = \begin{pmatrix} Q & Q \\ 0 & \mathbb{Z} \end{pmatrix}$. Prove that S is left Noetherian but not right Noetherian. (Do not quote the theorem from class, but rather prove this “from scratch”.)

Solution: We first show that S is left Noetherian. Let I be a nonzero left ideal of S. Assume that I contains a matrix of the form $\begin{pmatrix} q_1 & q_2 \\ 0 & a \end{pmatrix}$ with $a \neq 0$. Then multiplying this matrix on the left by $\begin{pmatrix} 0 & a^{-1}q \\ 0 & 0 \end{pmatrix}$ we obtain $\begin{pmatrix} 0 & q \\ 0 & 0 \end{pmatrix} \in I$ for any $q \in Q$. Thus I contains the (two-sided) ideal J of S consisting of all matrices in S with zeros everywhere except the $(1,2)$-entry. Now consider the ring homomorphism $\phi : R \to Q \times \mathbb{Z}$ which sends $\begin{pmatrix} q_1 & q_2 \\ 0 & a \end{pmatrix}$ to (q_1, a). Clearly, ϕ is surjective and $\ker \phi = J$. Then $R/J \cong Q \times \mathbb{Z}$, which is (left and right) Noetherian. Thus, the left ideal I/J is finitely generated. Since $J = R \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ is finitely generated, we obtain that I is finitely generated.

Now consider the case where all $(2,2)$-entries of elements of I are zero. Then I is a Q-vector space given by

$$ q \cdot \begin{pmatrix} q_1 & q_2 \\ 0 & 0 \end{pmatrix} := \begin{pmatrix} qq_1 & qq_2 \\ 0 & 0 \end{pmatrix}. $$

Note that for $A = \begin{pmatrix} q_1 & q_2 \\ 0 & a \end{pmatrix} \in S$ and $B \in I$, $AB = q_1B$. Hence, $SB = QB$. As I is a Q-subspace of Q^2, it has a finite basis. Then I is generated as a left R-module by this basis. Hence, I is finitely generated as a left R-module and R is left Noetherian.

To show R is not right Noetherian, consider for each $n \geq 0$ the right ideal

$$ I_n = \left\{ \begin{pmatrix} 0 & b \\ 0 & \frac{1}{2^n} \end{pmatrix} \mid b \in \mathbb{Z} \right\}. $$

Note that $I_n \subsetneq I_{n+1}$ for all n, as $\begin{pmatrix} 0 & \frac{1}{2^{n+1}} \\ 0 & 0 \end{pmatrix}$ is in I_{n+1} but not I_n. Hence, R does not satisfy ACC on right ideals.

5. Let R be a ring and $S = M_n(R)$. Prove there exists a bijection between the set of ideals of R and the set of ideals of S given by $I \mapsto M_n(I)$. Conclude that R is simple if and only if S is. (Hint: Let J be an ideal of S and let I be the set consisting of all the $(1,1)$-entries of matrices in J. Show that I is an ideal of R and that $J = M_n(I)$.)

Solution: Let I be an ideal of R. Then it is evident that $M_n(I)$ is an ideal of S. Suppose now that J is an ideal of S. Let I be the set of elements consisting of all the $(1,1)$ entries of matrices in J. It should be obvious that $0 \in I$ (as the zero matrix is in J) and that I is closed under addition. Let E_{ij} be the element of S which has 1 in the ith row and jth column and zeros elsewhere. Let $r \in R$ and $a \in I$. Let A be the matrix in J with a in the $(1,1)$-entry. Then $rE_{11}A \in J$ and $A(rE_{11}) \in J$ as J is an ideal of S. Also, $rE_{11}A$ has ra as its $(1,1)$ entry, and $A(rE_{11})$ has ar as its $(1,1)$-entry. Thus, $ra, ar \in I$ and I is an ideal. Now suppose $B = [b_{ij}] \in J$. Then $E_{11}BE_{j1} \in J$ and has b_{ij} as its $(1,1)$ entry. Thus, $b_{ij} \in I$ for all i, j and so $B \in M_n(I)$. Now let
$C = [c_{ij}] \in M_n(I)$. For each i, j let D_{ij} be the matrix in J with c_{ij} as its $(1,1)$-entry. Then $F_{ij} = E_{i1}D_{ij}E_{1j} \in J$ and has c_{ij} as its (i,j)-entry and zeros elsewhere. Then $C = \sum_{ij} F_{ij} \in J$. Consequently, $J = M_n(I)$.