Math 901

Solutions to Homework # 3

1. Let E be the splitting field of $f(x) = x^6 + 3 \in \mathbb{Q}[x]$ and let $\alpha \in E$ be a root of $f(x)$.

(a) Prove that $E = \mathbb{Q}(\alpha)$. (Hint: Note that $\frac{1+\sqrt{3}i}{2}$ is a primitive 6th root of unity.)

(b) Let G be the Galois group of E/\mathbb{Q}. Determine, with justification, whether G is abelian.

Solution: For part (a), the roots of $f(x)$ are $\omega^i \alpha$ for $i = 0, \ldots, 5$, where ω is a primitive 6th root of unity. Then $E = \mathbb{Q}(\omega, \alpha)$. But $(\alpha^3)^2 = -3$, so $\alpha^3 = \pm \sqrt{3}i$. Without loss of generality, assume $\alpha^3 = \sqrt{3}i$. Since $\frac{1+\sqrt{3}i}{2}$ is a primitive 6th root of unity, we see that $\omega \in \mathbb{Q}(\alpha)$. Hence, $E = \mathbb{Q}(\alpha)$.

For part (b), note that as $E = \mathbb{Q}(\alpha)$ and $x^6 + 3$ is irreducible over \mathbb{Q} (by Eisenstein), we have $[E : \mathbb{Q}] = 6$. Thus $G = \text{Gal}(E/\mathbb{Q})$ has order 6. For each $i = 0, \ldots, 5$, let $\sigma_i : E \to E$ be given by $\sigma_i(\alpha) = \omega^i \alpha$. These are well-defined since α and $\omega^i \alpha$ are both roots of $x^6 + 3$. Thus, $G = \{\sigma_i \mid i = 0, \ldots, 5\}$. Note that for each $j \geq 0$:

$$\sigma_j(\omega) = \sigma_j(\frac{1+\sqrt{3}i}{2}) = \sigma_j(\frac{1 + \alpha^3}{2}) = \frac{1 + \sigma_j(\alpha)^3}{2} = \frac{1 + \omega^{3j} \alpha^3}{2} = \frac{1 + (-1)^j \sqrt{3}i}{2}.$$

Hence, $\sigma_j(\omega) = \omega^5$ if j is odd and $\sigma_j(\omega) = \omega$ if j is even. Now,

$$\sigma_2 \sigma_1(\alpha) = \sigma_2(\omega \alpha) = \sigma_2(\omega) \sigma_2(\alpha) = \omega \cdot \omega^2 \alpha = \omega^3 \alpha.$$

Also,

$$\sigma_1 \sigma_2(\alpha) = \sigma_1(\omega^2 \alpha) = \sigma_1(\omega)^2 \sigma_1(\alpha) = (\omega^5)^2 \cdot \omega \alpha = \omega^5 \alpha.$$

Hence, $\sigma_1 \sigma_2 \neq \sigma_2 \sigma_1$ and G is not abelian.

2. Let E/F be a finite Galois field extension with Galois group G. Let $\alpha \in E$ and H the Galois group of $E/F(\alpha)$. Let $\sigma_1, \ldots, \sigma_n$ be a complete set of coset representatives for H in G. (I.e., $n = [G : H]$ and $\sigma_i H \neq \sigma_j H$ for all $i \neq j$.) Prove that the minimal polynomial of α over F is $\prod_{i=1}^n (x - \sigma_i(\alpha))$.

Solution: Let $f(x) = \prod_{i=1}^n (x - \sigma_i(x))$. Clearly, $f(x)$ is monic and $\deg f = [G : H] = [F(\alpha) : F]$. Let σ_1 be the coset representative for H; i.e., $\sigma_1 \in H$. Then $\sigma_1(\alpha) = \alpha,$
4. Let \(E/F \) be a finite Galois extension and \(K \) an intermediate field. Let \(G = \text{Gal}(E/F) \) and \(H = \text{Gal}(E/K) \). Prove that \(N_G(H) = \{ g \in G \mid g(K) = K \} \) and \(N_G(H)/H \cong \text{Aut}(K/F) \).

Solution: Suppose \(g \in N_G(H) \) and \(h \in H \). Since \(g^{-1}hg \in H \) then \(g^{-1}hg \) restricted to \(K \) is the identity map. For \(k \in K, k = (g^{-1}hg)(k) \), so \(g(k) = h(g(k)) \). Since this holds for all \(h \in H \), we see that \(g(k) \in E_H = K \) for all \(k \in K \). Thus, \(g(K) \subseteq K \). As \(K/F \) is algebraic, we have \(g(K) = K \). Conversely, suppose \(g(K) = K \). Let \(h \in H \). To show \(g^{-1}hg \in H \) it suffices to show that \((g^{-1}hg)(k) = k \) for all \(k \in K \). But as \(g(k) \in K, h(g(k)) = g(k) \). Hence, \(g^{-1}h(g(k)) = (g^{-1}g)(k) = k \). Thus, \(g \in N_G(H) \).

For the second statement, define a map \(\phi : N_G(H) \to \text{Aut}(K/F) \) by restriction to \(K \). This map is well-defined by the first part of the problem. Clearly, \(\phi \) is a group homomorphism. Any \(\sigma \in \text{Aut}(K/F) \) can be extended to an element \(\tau \in G \). Then \(\phi(\tau) = \sigma \) and we have that \(\phi \) is surjective. Finally, \(\sigma \in \ker \phi \) if and only if \(\sigma \) fixes \(K \), which is if and only if \(\sigma \in H \). The desired isomorphism now follows.

5. Let \(K \subseteq E, F \subseteq L \) are fields and suppose \(E/K \) is finite and Galois. Prove that \(EF/F \) is Galois and \(\text{Gal}(EF/F) \) is isomorphic to a subgroup of \(\text{Gal}(E/K) \).

Solution: As \(E/K \) is finite and separable, \(E = K(\alpha) \). Let \(f(x) = \text{Min}(\alpha, K) \). Then \(E \) is the splitting field of \(f(x) \) over \(K \). Now \(EF = F(\alpha) \). As \(\alpha \) is separable over \(K \), \(\alpha \) is separable over \(F \). Thus, \(EF/F \) is separable. Also, \(EF \) is the splitting field for \(f(x) \) over \(F \), so \(EF/F \) is normal and hence Galois. Now define \(\phi : \text{Gal}(EF/F) \to \text{Gal}(E/K) \) by restriction to \(E \). Then \(\phi \) is a well-defined group homomorphism. If \(\sigma \in \ker \phi \) then \(\sigma \) restricted to \(E \) is the identity map. Since \(\sigma \) restricted to \(F \) is the identity map, we obtain that \(\sigma \) is the identity map on \(EF \). (See, for example, Problem \# 3 from Homework \# 1.) Thus, \(\ker \phi = \{ 1 \} \) and \(\phi \) is injective.
Let F be a field and $f(x) \in F[x]$ a separable irreducible polynomial of prime degree. Let α be a root of $f(x)$ and suppose $f(x)$ has at least two roots in $E = F(\alpha)$. Prove that E is the splitting field for $f(x)$ and that E/F is cyclic. (Hint: Let L be the normal closure of E/F, $G = \text{Gal}(L/F)$, and $H = \text{Gal}(L/E)$. Prove that $H \neq N_G(H)$.)

Solution: Let $\beta \neq \alpha$ be a root of $f(x)$ in $E = F(\alpha)$. As $f(x)$ is irreducible, $E = F(\beta)$ as well. Also, there exists an automorphism σ of E which fixes F and sends α to β. Extend σ to an element $\tau \in G$. As $\tau(E) = E$, $\tau \in N_G(H)$ by Problem #4. Moreover, as τ does not fix E, $\tau \not\in H$. Hence, H is a proper subgroup of $N_G(H)$. Now, $[G : H] = [E : F] = p$ (the degree of $f(x)$), so $[G : N_G(H)] = 1$. Hence, H is normal in G, which implies E is normal over F. Hence, $E = L$ and G has prime order.

Let E be a finite extension of a finite field F. Prove that Tr_E^F and N_E^F are surjective (as maps from E to F). (Recall from Math 818 that E/F is a cyclic extension.)

Solution: As finite fields are perfect, E/F is separable. Thus, Tr_E^F is nonzero. As Tr_E^F is a linear transformation of F-vector spaces from E to F, and F is one-dimensional, we see that Tr_E^F is surjective. For the norm, clearly $\text{N}_E^F(\alpha) = 0$ if and only if $\alpha = 0$. Let ϕ be N_E^F restricted to $E^* = E \setminus \{0\}$. It suffices to prove that $\phi : E^* \to F^*$ is surjective. As ϕ is a group homomorphism, it is enough to prove that $|E^*|/|K| = |F^*|$, where $K = \ker \phi$. Let $G = \langle \sigma \rangle$. By Hilbert’s Satz 90, $K = \{ \frac{\alpha}{\sigma(\alpha)} \mid \alpha \in E^* \}$. Now, K is the image of the group homomorphism $f : E^* \to E^*$ given by $f(\alpha) = \frac{\alpha}{\sigma(\alpha)}$. Note that $\alpha \in \ker f$ if and only if $\sigma(\alpha) = \alpha$, which holds if and only if $\alpha \in F^*$ (as $F = E_\sigma$). Hence, $|K| = |E^*|/|F^*|$ and so $|E^*|/|K| = |F^*|$.