Math 901
Solutions to Homework # 2

1. Let E and L be subfields of a field K, and F a subfield of both E and L. Suppose E/F and L/F are normal. Prove that EL/F is normal.

Solution: Let $\sigma : EL \to \overline{F}$ be a field embedding fixing F, where \overline{F} is an algebraic closure of F. Then $\sigma|_E : E \to \overline{F}$ and $\sigma|_L : L \to \overline{F}$ are embeddings fixing F. Since E/F and L/F are normal, we have $\sigma(E) = E$ and $\sigma(L) = L$. Hence, $\sigma(EL) \subseteq EL$ (using, for example, problem 3 from Homework set 1). Thus, EL/F is normal.

2. Let E/F be a separable algebraic extension and L the normal closure of E/F. Prove that L/F is separable.

Solution: The normal closure L of E/F is the splitting field of the set of all polynomials $\text{Min}(\alpha, F)$ where $\alpha \in E$. Since E/F is separable, each $\text{Min}(\alpha, F)$ is a separable polynomial. Thus, the roots of each $\text{Min}(\alpha, F)$ are separable. Since L is F adjoin a set of separable elements (i.e., the roots of $\text{Min}(\alpha, F)$ for each $\alpha \in E$), we see that L/F is separable.

3. Let E/F be normal field extension and $K = F^{\text{sep}}$ and $L = F^{\text{insep}}$ be the separable and purely inseparable closures, respectively, of F in E. Prove that E/K is purely inseparable, E/L is separable, and $E = KL$.

Solution: If $\text{char } F = 0$ then $E = K$ and $L = F$ and the result is trivial. So assume $\text{char } F = p > 0$. Let $\alpha \in E$. Then α^{p^n} is separable over F for some n. Hence, $\alpha^{p^n} \in K$. Thus, E/K is purely inseparable. As E/F is normal, we have E/L is normal. Suppose E/L is inseparable. Then, by a theorem proved in class, there exists $\alpha \in E \setminus L$ which is purely inseparable over L; i.e., $\beta = \alpha^{p^n} \in L$ for some n. But as L/F is purely inseparable, there exists m such that $\beta^{p^m} \in F$; i.e., $\alpha^{p^{n+m}} \in F$. Thus, α is purely inseparable over F, so $\alpha \in L$, a contradiction. Hence, E/L is separable. As $E \supseteq KL \supseteq L$ and E/L is separable, we have that E/KL is separable. As $E \supseteq KL \supseteq K$ and E/K is purely inseparable, we have that E/KL is purely inseparable. Since the only elements which are both separable over KL and purely inseparable over KL are the elements of KL, we conclude that $E = KL$.

4. Let E/F be a field extension. Prove that there exists a unique intermediate field L of E/F such that E/L is purely inseparable and L/F is separable.

Solution: We’ve seen in the previous problem that $L = F^{\text{sep}}$ satisfies the requisite properties. Suppose T is an intermediate field such that E/T is purely inseparable and T/F is separable. Then, as T/F is separable, $T \subseteq L$. On the other hand, L/T is purely inseparable and also separable. Hence, $L = T$.

5. Let E/F be a normal field extension and $f(x) \in F[x]$ an irreducible polynomial. Suppose $g(x)$ and $h(x)$ are monic irreducible factors of $f(x)$ in $E[x]$. Prove that there exists an automorphism σ of E such that $g(x) = h^\sigma(x)$, where $h^\sigma(x)$ is the polynomial obtained by applying σ to the coefficients of $h(x)$.

Solution: Let $\alpha, \beta \in \overline{E}$ be roots of $g(x)$ and $h(x)$, respectively. Then, as α and β are both roots of $f(x)$ and $f(x)$ is irreducible over F, there exists an isomorphism $\tau : F(\alpha) \rightarrow F(\beta)$ fixing F and such that $\tau(\alpha) = \beta$. Extend τ to $\phi : E \rightarrow E$. Let $\sigma : E \rightarrow E$ be the restriction of ϕ to E, which is an automorphism of E. (Here we are using E/F is normal.) Note that $g(x) = \text{Min}(\alpha, E)$ and $h(x) = \text{Min}(\beta, E)$. Now,

$$0 = \phi(0) = \phi(g(\alpha)) = g^\phi(\phi(\alpha)) = g^\sigma(\beta).$$

As $g^\sigma(x)$ is monic, irreducible over E and β is a root, we must have $g^\sigma(x) = h(x)$.

6. Let $E = \mathbb{F}_p(t)$ where t is transcendental over \mathbb{F}_p. Let σ be the automorphism of E which (necessarily) fixes \mathbb{F}_p and such that $\sigma(t) = t + 1$. Let $E_\sigma = \{ \alpha \in E \mid \sigma(\alpha) = \alpha \}$. Prove that $E_\sigma = \mathbb{F}_p(t^p - t)$.

Solution: First note that $\sigma(t^p - t) = \sigma(t)^p - \sigma(t) = (t+1)^p - (t+1) = t^p + 1 - (t+1) = t^p - t$. Hence, $\mathbb{F}_p(t^p - t) \subseteq E_\sigma$. Also note that $[E : \mathbb{F}_p(t^p - t)] \leq p$ since $E = \mathbb{F}_p(t)$ and t is a root of the polynomial $x^p - x - (t^p - t) \in \mathbb{F}_p(t^p - t)[x]$. On the other hand, by Artin’s Theorem, $[E : E_\sigma] = |\langle \sigma \rangle| = p$. (One easily checks that $\sigma^p(t) = t$.) Thus, $[E_\sigma : \mathbb{F}_p(t^p - t)] = 1$ and so $E_\sigma = \mathbb{F}_p(t^p - t)$.