Math 901
Homework # 2
Due: Friday, September 18th

1. Let E and L be subfields of a field K, and F a subfield of both E and L. Suppose E/F and L/F are normal. Prove that EL/F is normal.

2. Let E/F be a separable algebraic extension and L the normal closure of E/F. Prove that L/F is separable.

3. Let E/F be normal field extension and $K = F^{\text{sep}}$ and $L = F^{\text{insep}}$ be the separable and purely inseparable closures, respectively, of F in E. Prove that E/K is purely inseparable, E/L is separable, and $E = KL$.

4. Let E/F be a field extension. Prove that there exists a unique intermediate field L of E/F such that E/L is purely inseparable and L/F is separable.

5. Let E/F be a normal field extension and $f(x) \in F[x]$ an irreducible polynomial. Suppose $g(x)$ and $h(x)$ are monic irreducible factors of $f(x)$ in $E[x]$. Prove that there exists an automorphism σ of E such that $g(x) = h^\sigma(x)$, where $h^\sigma(x)$ is the polynomial obtained by applying σ to the coefficients of $h(x)$.

6. Let $E = \mathbb{F}_p(t)$ where t is transcendental over \mathbb{F}_p. Let σ be the automorphism of E which (necessarily) fixes \mathbb{F}_p and such that $\sigma(t) = t + 1$. Let $E_\sigma = \{ \alpha \in E \mid \sigma(\alpha) = \alpha \}$. Prove that $E_\sigma = \mathbb{F}_p(t^p - t)$.