Math 901

Solutions to Exam # 1

Section III

5. Let E be the splitting field for $x^8 - 1$ over \mathbb{Q}. Find (explicitly) the elements of the Galois group of E/\mathbb{Q} and find (with justification) primitive elements for each of the intermediate fields of E/\mathbb{Q}.

Solution: The roots of $x^8 - 1$ are just the 8th roots of unity. Let ω be a primitive 8th root of unity. Then $E = \mathbb{Q}(\omega)$. We also know from a result in class that $G = \text{Gal}(E/\mathbb{Q}) \cong \mathbb{Z}_8^*$. Let ϕ be an element of G. Then ϕ is determined by $\phi(\omega)$. Further, $\phi(\omega)$ must be a primitive 8th root of unity, which are $\omega, \omega^3, \omega^5, \omega^7$. Since $|G| = 4$, all four primitive 8th roots of unity determine legitimate automorphisms of E/\mathbb{Q}. Let σ be the element of G defined by $\sigma(\omega) = \omega^3$ and τ the element of G given by $\tau(\omega) = \omega^5$. Then $(\sigma\tau)(\omega) = (\tau\sigma)(\omega) = \omega^7$. Further, $\sigma^2 = \tau^2 = (\sigma\tau)^2 = 1$, the identity map on E. Thus, $G = \{1, \sigma, \tau, \sigma\tau\}$, the Klein-4 group. The intermediate fields of E/\mathbb{Q} correspond to the subgroups of G. The nontrivial subgroups of G are $\langle \sigma \rangle$, $\langle \tau \rangle$, and $\langle \sigma\tau \rangle$. Note that as $|\sigma| = 2$, $\omega + \sigma(\omega) = \omega + \omega^3 \in E_\sigma$. Thus, $\mathbb{Q}(\omega + \omega^3) \subseteq E_\sigma$. Further, ω is a root of $(x - \omega)(x - \omega^3) = x^2 - (\omega + \omega^3) - 1 \in \mathbb{Q}(\omega + \omega^3)[x]$. Hence, $[E : \mathbb{Q}(\omega + \omega^3)] \leq 2$. Since, $[E : E_\sigma] = |\sigma| = 2$, we see that $E_\sigma = \mathbb{Q}(\omega + \omega^3)$. In almost identical fashion, one can show that $E_{\sigma\tau} = \mathbb{Q}(\omega + \omega^7)$. For $\langle \tau \rangle$, notice that $\tau(\omega^2) = (\tau(\omega))^2 = \omega^{10} = \omega^2$. Thus, $\omega^2 \in E_\tau$. If one notices that $\omega^2 = \pm i$, then one sees that $[\mathbb{Q}(\omega^2) : \mathbb{Q}] = 2$ and hence $E_\tau = \mathbb{Q}(\omega^2)$. Alternatively, one can observe that ω is a root of $(x - \omega)(x + \omega) = x^2 - \omega^2 \in \mathbb{Q}(\omega^2)[x]$. Thus, as above, we have that $[E : \mathbb{Q}(\omega^2)] \leq 2$ and $E_\tau = \mathbb{Q}(\omega^2)$.

6. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 7 and E its splitting field. Let G be the Galois group of E/\mathbb{Q} and suppose $[E : \mathbb{Q}] = 21$. Prove that $\mathbb{Q}(\alpha) \neq \mathbb{Q}(\beta)$ for every pair of distinct roots α, β of $f(x)$ (Hint: First argue that G cannot be abelian.)

Solution: Let $\alpha \in E$ be a root of $f(x)$. Then $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 7$. If G is abelian, then every intermediate field of E/\mathbb{Q} is normal over \mathbb{Q}, and so $\mathbb{Q}(\alpha)$ would be the splitting field of $f(x)$. This contradicts that E is the splitting field and $[E : \mathbb{Q}] = 21$. So G is nonabelian. Let P be a Sylow 3-subgroup of G and Q a Sylow 7-subgroup of G. By Sylow’s Theorems, we have that Q is normal in G. If P is also normal, then G would be cyclic, a contradiction. Hence, P is not normal. Since $[G : P] = 7$ and $P \leq N_G(P) \neq G$, we must have $N_G(P) = P$. Now, suppose $L = \mathbb{Q}(\alpha) = \mathbb{Q}(\beta)$ for two distinct roots α and β of $f(x)$. Then $\text{Aut}(L/\mathbb{Q}) \neq \{1\}$, as there exists an automorphism of L sending α to β. Let $H = \text{Gal}(E/L)$. Then $|H| = 3$, a Sylow 3-subgroup. By a homework problem (in fact, Problem # 3 on this exam), we have $N_G(H)/H \cong \text{Aut}(L/\mathbb{Q})$. But this contradicts that $N_G(H) = H$ for every Sylow 3-subgroup of G. Thus, $\mathbb{Q}(\alpha) \neq \mathbb{Q}(\beta)$ for every pair of distinct roots α and β of $f(x)$.
7. Let E/\mathbb{Q} be an algebraic field extension and suppose every irreducible polynomial in $\mathbb{Q}[x]$ has a root in E. Prove that E is algebraically closed. (Hint: Use the primitive element theorem on an appropriate splitting field.)

Solution: Fix some algebraic closure \overline{E} of E. It suffices to show that $\overline{E} = E$. Let $\alpha \in \overline{E}$. Then α is algebraic over \mathbb{Q}. Let $f(x) \in \mathbb{Q}[x]$ be the minimal polynomial of α over \mathbb{Q} and L the splitting field for $f(x)$ over \mathbb{Q}. Note that $\alpha \in L$. As L/\mathbb{Q} is finite and separable (characteristic zero), there exists $\beta \in L$ such that $L = \mathbb{Q}(\beta)$ by the Primitive Element Theorem. Finally, let $h(x)$ be the minimal polynomial of β over \mathbb{Q}. Note that since L is normal over \mathbb{Q}, $h(x)$ splits in L and in fact $L = \mathbb{Q}(\gamma)$ for every root γ of $h(x)$. (Note that as $h(x)$ is irreducible, $[L : \mathbb{Q}] = [\mathbb{Q}(\beta) : \mathbb{Q}] = [\mathbb{Q}(\gamma) : \mathbb{Q}]$ for every root γ of $h(x)$.) But by hypothesis, $h(x)$ has a root in E. Hence, $\alpha \in L \subseteq E$.

8. Let E/\mathbb{Q} be a finite Galois extension whose Galois group is simple and nonabelian. Suppose there exists a prime p and an element $\alpha \in E$ such that $\alpha^p \in \mathbb{Q}$. Prove that $\alpha \in \mathbb{Q}$. (Hint: Let $\beta = \alpha^p$. Then the minimal polynomial of α over \mathbb{Q} divides $x^p - \beta$. Find the roots of this polynomial.)

Solution: Let $\beta = \alpha^p$ as in the hint. The roots of $f(x) = x^p - \beta$ are $\omega^i\alpha$, for $i = 0, \ldots, p-1$, where ω is a primitive pth root of unity. Let $g(x)$ be the minimal polynomial of α over \mathbb{Q}. If $\deg g(x) = 1$ then $\alpha \in \mathbb{Q}$ and we are done. So suppose $\deg g \geq 2$. As $g(x)$ divides $f(x)$, we must have $\omega^i\alpha$ is a root of $g(x)$ for some $i = 1, \ldots, p-1$. Since E/\mathbb{Q} is normal and $g(x)$ has a root (namely, α) in E, $g(x)$ splits in E. Thus, $\omega^i\alpha \in E$. Since $\alpha \in E$, we obtain that $\omega^i \in E$. Now, ω^i is also a primitive pth root of unity (as $\gcd(i, p) = 1$), so $\mathbb{Q}(\omega^i) = \mathbb{Q}(\omega)$ is a subfield of E. Since $\mathbb{Q}(\omega)$ is the splitting field for $x^p - 1$ over \mathbb{Q}, we have that $\mathbb{Q}(\omega)/\mathbb{Q}$ is a normal extension.

Then $H = \text{Gal}(E/\mathbb{Q}(\omega))$ is a normal subgroup of $G = \text{Gal}(E/\mathbb{Q})$. Since G is simple, we must have $H = \{1\}$ or $H = G$.

Suppose first that $H = \{1\}$. Then $E = \mathbb{Q}(\omega)$. But then $G = \text{Gal}(\mathbb{Q}(\omega))/\mathbb{Q}) \cong \mathbb{Z}_p^*$, which is abelian, a contradiction.

Now suppose $H = G$. Then $\mathbb{Q}(\omega) = \mathbb{Q}$, which implies $p = 2$ (as $[\mathbb{Q}(\omega) : \mathbb{Q}] = \phi(p) = p - 1$). Then α is a root of $x^2 - \beta \in \mathbb{Q}[x]$. As we are assuming $\alpha \notin \mathbb{Q}$, we have $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 2$. Thus, $\mathbb{Q}(\alpha)/\mathbb{Q}$ is a normal extension. Since G is simple, there are no intermediate fields which are normal over \mathbb{Q} except E and \mathbb{Q}. Thus, we must have $E = \mathbb{Q}(\alpha)$. But then $|G| = 2$ and G is abelian, a contradiction.

Hence, $\deg g = 1$ and $\alpha \in \mathbb{Q}$.