Math 818

Exam I

Instructions: Do a total of five problems, but no more than three from either section. (That is, do two from one section and three from the other.) All problems are worth 20 points.

Note: In all problems, R denotes a commutative ring with identity.

Section I

1. Prove that any PID is a UFD. (You may use the fact that we proved in class that a domain R is a UFD if and only if R satisfies ACC on principal ideals and every irreducible element is prime.)

2. Prove that $\mathbb{Z}[\sqrt{-5}]$ is not a UFD. (You may use that the function $N : \mathbb{Z}[\sqrt{-5}] \to \mathbb{N}$ defined by $N(a + b\sqrt{-5}) = a^2 + 5b^2$ satisfies $N(\alpha\beta) = N(\alpha)N(\beta)$ for all $\alpha, \beta \in \mathbb{Z}[\sqrt{-5}].$

3. Suppose R is a Noetherian ring and x is an indeterminate. Prove that $R[x]$ is Noetherian.

4. Let R be a UFD and P a prime ideal of R, and F the field of fractions of R. Let x be an indeterminate and $f(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in R[x]$. Suppose $a_n \notin P$, $a_i \in P$ for $0 \leq i \leq n-1$, and $a_0 \notin P^2$. Prove that $f(x)$ is irreducible in $F[x]$.

Section II

5. Let R be a domain and M an R-module. A subset S of M is called a maximal linearly independent set of M if S is linearly independent (over R) and any subset of M properly containing S is linearly dependent. Let T be a linearly independent subset of M and N the R-submodule of M generated by T. Prove that T is a maximal linearly independent subset if and only if M/N is torsion (i.e., Tor$(M/N) = M/N$).

6. Let R be a ring and let J be the intersection of all maximal ideals of R. For $x \in R$, prove that $x \in J$ if and only if $1 - rx$ is a unit for every $r \in R$.

7. Let p be a positive prime integer and $f(x) = x^{p-1} + x^{p-2} + \cdots + x + 1 \in \mathbb{Z}[x]$. Let $I = (p, f(x))\mathbb{Z}[x]$. Find all maximal ideals of $\mathbb{Z}[x]/I$. (Hint: Note that $\overline{f}(x) \in \mathbb{Z}_p[x]$ is not irreducible unless $p = 2$.)

8. Let R be a commutative ring.

 (a) Suppose $f : M \to N$ is a surjective homomorphism and I an ideal of R. Prove that the function $\overline{f} : M/IM \to N/IN$ given by $\overline{f}(u + IM) = f(u) + IN$ is a well-defined surjective homomorphism.

 (b) Suppose $f : R^m \to R^n$ is a surjective homomorphism. Prove that $m \geq n$.