7. Modular Arithmetic

Let’s first discuss briefly the concept of an equivalence relation on a set.

Definition 1. Let S be a set. A relation \sim on S is called an *equivalence relation* if the following hold for all $a, b, c \in S$:

1. $a \sim a$. (The reflexive property)
2. If $a \sim b$ then $b \sim a$. (The symmetric property)
3. If $a \sim b$ and $b \sim c$ then $a \sim c$. (The transitive property)

Equality is an equivalence relation on any set. But there are many other examples of equivalence relations. For example, let S be the set of all people. Define a relation \sim on S by setting, for $P, Q \in S$, that $P \sim Q$ if and only if P and Q have the same birthday. As an example in a more mathematical setting, let Λ be the set of all triangles. Define a relation \sim on Λ by defining, for $A, B \in \Lambda$ that $A \sim B$ if and only if A and B have the same perimeter. It is easy to see both of these are equivalence relations. On the other hand, the relation on Λ (the set of all triangles) by $A \sim B$ if and only if A and B have at least one congruent angle is not an equivalence relation. (Why?)

Exercise: Define a relation \sim on \mathbb{Z} by $a \sim b$ if and only if $a - b$ is even. Is this an equivalence relation? What about if we define $a \sim b$ by $a - b$ is odd?

Definition 2. Let n be a positive integer and $a, b \in \mathbb{Z}$. We say a is congruent to b modulo n if $n \mid (a - b)$. We write this as $a \equiv b \pmod{n}$.

For example, $12 \equiv 22 \pmod{5}$, since $5 \mid (12 - 22)$. Also, $100 \equiv -11 \pmod{37}$, since $37 \mid (100 - (-11))$. On the other hand, $-14 \not\equiv 30 \pmod{7}$ since 7 does not divide $-14 - 30$.

Congruence modulo n defines a relation on the set \mathbb{Z} of integers by $a \sim b$ if $a \equiv b \pmod{n}$. In fact, it defines an equivalence relation on \mathbb{Z}.

Exercise: Prove that congruence modulo n is an equivalence relation on \mathbb{Z}. That is, for all $a, b, c \in \mathbb{Z}$, the following hold:

1. $a \equiv a \pmod{n}$.
2. If $a \equiv b \pmod{n}$ then $b \equiv a \pmod{n}$.
3. If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ then $a \equiv c \pmod{n}$.

Exercise: Let n be a positive integer, and $a \in \mathbb{Z}$. Let r be the remainder upon dividing a by n. Prove that $a \equiv r \pmod{n}$.

On the other hand, suppose $a \equiv s \pmod{n}$ and $0 \leq s < n$. Then s is the remainder upon dividing a by n. To see this, note that $n \mid (a - s)$, so $a - s = nq$ for some $q \in \mathbb{Z}$. Then $a = nq + s$. Since $0 \leq s < n$, s must be the remainder. Therefore, the remainder upon dividing a by n is the smallest nonnegative integer which is congruent to a modulo n. In fact, this remainder is
the only nonnegative integer less than \(n \) which is congruent to \(a \) modulo \(n \). We call this integer the least nonnegative residue of \(a \) modulo \(n \) and denote it by \(\text{lnr}(a, n) \). It is just another name for the remainder upon dividing \(a \) by \(n \).

Now, a very important property of congruence modulo \(n \) is that it respects the operations of addition and multiplication:

Proposition 3. Let \(n \) be a positive integer and \(a, b, c, d \in \mathbb{Z} \). Suppose that \(a \equiv b \pmod{n} \) and \(c \equiv d \pmod{n} \). Then

1. \(a + c \equiv b + d \pmod{n} \).
2. \(ac \equiv bd \pmod{n} \).
3. \(a^m \equiv b^m \pmod{n} \) for all \(m \geq 1 \).

Proof. By assumption, we have \(n \mid a - b \) and \(n \mid c - d \). This means that \(a - b = nr \) and \(c - d = ns \) for some \(r, s \in \mathbb{Z} \). So \(a = b + nr \) and \(c = d + ns \). Then \((a + c) - (b + d) = (b + nr + d + ns) - (b + d) = nr + ns = n(r + s) \). This shows that \(n \) divides \((a+b) - (c+d) \), which implies \(a + b \equiv c + d \pmod{n} \). For the second part, we have \(ac - bd = (b + nr)(d + ns) - bd = bd + bns + dnr + n^2rs - bd = bns + dnr + n^2rs = n(bs + dr + nrs) \). This shows that \(n \) divides \(ac - bd \), so \(ac \equiv bd \pmod{n} \). The proof of the last part is one of your homework problems. \(\square \)

Exercise: Without use of a calculator, find \(\text{lnr}((21)^{10}, 5) \) and \(\text{lnr}((39)^{17}, 5) \).

Homework:

1. Prove part 3 of Propostion 3. (Use induction.)
2. Find \(\text{lnr}((14)^{20}, 16) \)
3. Find \(\text{lnr}((10)^{100}, 101) \).