11. The Euler’s Theorem

Definition 1. Let \(m \geq 2 \) be an integer. We define \(\phi(m) \) to be the number of integers \(a \) in the range \(1 \leq a \leq m \) such that \(\gcd(a, m) = 1 \). The function \(\phi \) is called the Euler \(\phi \)-function.

The following table gives the \(\phi(m) \) for small values of \(m \):

<table>
<thead>
<tr>
<th>(m)</th>
<th>(a) with (1 \leq a \leq m) such that (\gcd(a, m) = 1)</th>
<th>(\phi(m))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1,2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1,3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1,2,3,4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>1,5</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>1,2,3,4,5,6</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>1,3,5,7</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>1,2,4,5,7,8</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>1,3,7,9</td>
<td>4</td>
</tr>
</tbody>
</table>

It should be clear that if \(p \) is prime, then \(\phi(p) = p - 1 \). This is because every integer from 1 to \(p \) except for \(p \) is relatively prime to \(p \). What is not clear is what \(\phi(m) \) is when \(m \) is not prime. We’ll find a formula for \(\phi(m) \) on the next worksheet.

For an integer \(m \geq 2 \), we let \(S_m^* \) be the set of integers between 1 and \(m - 1 \) which are relatively prime to \(m \). For example, we have:

\[
S_4^* = \{1, 3\} \\
S_5^* = \{1, 3, 5, 7\} \\
S_9^* = \{1, 2, 4, 5, 7, 8\} \\
S_{10}^* = \{1, 3, 7, 9\}
\]

We note that \(S_m^* \) has \(\phi(m) \) elements, by definition of the Euler \(\phi \)-function.

Lemma 2. Suppose \(\gcd(a, m) = 1 \) and \(b \in S_m^* \). Prove that \(\lnr(ab, m) \in S_m^* \).

Proof. Homework. \(\square \)

If \(\gcd(a, m) = 1 \), we can define a function \(f_m^a : S_m^* \rightarrow S_m^* \) by \(f_m^a(x) = \lnr(ax, m) \) for each \(x \in S_m \). Here is an example with \(m = 9 \). We have \(S_9^* = \{1, 2, 4, 5, 7, 8\} \). Let’s choose \(a = 4 \). Then

\[
\begin{align*}
f_9^4(1) &= \lnr(4 \cdot 1, 9) = 4 \\
f_9^4(2) &= \lnr(4 \cdot 2, 9) = 8 \\
f_9^4(4) &= \lnr(4 \cdot 4, 9) = 7 \\
f_9^4(5) &= \lnr(4 \cdot 5, 9) = 2 \\
f_9^4(7) &= \lnr(4 \cdot 7, 9) = 1 \\
f_9^4(8) &= \lnr(4 \cdot 8, 9) = 5
\end{align*}
\]

Notice that, just as with the case \(m = p \) is prime (which we did before on Worksheet #9), every element in \(S_9^* \) was ‘hit’; that is, the map is *onto*. We want to prove this is always the case:
Proposition 3. Suppose \(m \) is prime and \(\gcd(a,m) = 1 \). Then the map \(f_m^a : S_m^* \to S_m^* \) is one-to-one and onto.

Proof. We first prove \(f_m^a \) is one-to-one. Suppose \(f_m^a(x) = f_m^a(y) \) for some \(x, y \in S_m^* \). Then \(\lnr(ax,m) = \lnr/ay,m) \). Thus, \(ax \equiv ay \pmod{m} \). Since \(a \in S_m^* \), \(\gcd(a,m) = 1 \). Thus, we can cancel \(a \) from both sides of this congruence equation and obtain \(x \equiv y \pmod{m} \). That is, \(m \) divides \(x - y \). But since \(1 \leq x, y \leq m - 1 \), this must mean \(x = y \). Hence, \(f_m^a \) is one-to-one. Since \(f_m^a \) is a one-to-one function from a finite set to itself, \(f_m^a \) must be onto as well.

By mimicking the proof for Fermat’s theorem, we can obtain a more general version of it called Euler’s Theorem:

Theorem 4. (Euler’s Theorem) Let \(m \geq 2 \) be an integer and \(a \) an integer such that \(\gcd(a,m) = 1 \). Then \(a^{\phi(m)} \equiv 1 \pmod{m} \).

Proof. By the theorem above, \(f_m^a : S_m^* \to S_m^* \) is one-to-one and onto, we have

\[
S_m^* = \{x_1, x_2, \ldots, x_{\phi(m)}\} = \{f_m^a(x_1), f_m^a(x_2), \ldots, f_m^a(x_{\phi(m)})\} = \{\lnr(ax_1, m), \lnr(ax_2, m), \ldots, \lnr(ax_{\phi(m)}, m)\}.
\]

Thus,

\[
x_1 x_2 \cdots x_{\phi(m)} \equiv (ax_1)(ax_2) \cdots (ax_{\phi(m)}) \pmod{m} \\
\equiv x_1 x_2 \cdots x_{\phi(m)} a^{\phi(m)} \pmod{m}
\]

Since each \(x_i \) is relatively prime to \(m \), we can cancel it from both sides of the modular equation. (Equivalently, we could multiply both sides of the equation by the inverse of \(x_i \).) Doing this for all \(x_i \), we obtain:

\[
1 \equiv a^{\phi(m)} \pmod{m}.
\]

Homework:

1. Prove Lemma 2.

2. We’ll show on the next worksheet that \(\phi(1000) = 400 \). Use this fact to find \(\lnr((21)^{800}, 1000) \).