18. More on Fermat’s Theorem and inverses modulo m

We began with the homework which was assigned last Thursday:

Example: Find $3^{31063} \% 17$.

Answer: By Fermat’s theorem, we have that $3^{16} \equiv 1 \pmod{17}$. Dividing 16 into 31063, we have $31063 = (1941)(16) + 7$. Hence

$$3^{31063} = 3^{(1941)(16)+7}$$

$$= (3^{16})^{1941} \cdot 3^7$$

$$\equiv (1)^{1941} \cdot 3^7 \pmod{17}$$

$$\equiv 3^7 \pmod{17}$$

$$\equiv 3^4 \cdot 3^3 \pmod{17}$$

$$\equiv 81 \cdot 27 \pmod{17}$$

$$\equiv 13 \cdot 10 \pmod{17}$$

$$\equiv 11 \pmod{17}$$

Since we will need the result of the second homework problem later, we state it as a theorem:

Theorem: Let a, b, c be integers and suppose $a | c$ and $b | c$. Suppose $\gcd(a, b) = 1$. Then $ab | c$.

Proof: (Erica) We have $c = ad$ and $c = be$ for some integers d and e. Since $\gcd(a, b) = 1$, we have that $1 = ax + by$. Multiplying by c, we obtain $c = axc + byc = axbe + byad = ab(xe + yd)$. Thus, ab divides c. \(\square\)

We then moved on to a discussion of a new proof of Fermat’s Theorem.

First we introduce some notation. Let p be a prime. Let

$$S_p = \{1, 2, 3, \ldots, p-1\}.$$

That is, S_p is the set of all the numbers between 1 and $p - 1$. Given $a, b \in S_p$, note that $ab \% p$ is also in S_p. If not, then $ab \% p = 0$, which means p divides ab. As p is prime, this would mean that p divides a or p divides b, contradicting that a and b are between 1 and $p - 1$. For $a \in S_p$ define a function $f : S_p \to S_p$ by $f_p^a(i) = ai \% p$ for each $i \in S_p$.

$$aS_p = \{a \% p, 2a \% p, \ldots, (p - 1)a \% p\}.$$

Let’s do an example with $p = 5$. We have $S_5 = \{1, 2, 3, 4\}$. Choose a random element in S_5, say 3. Then

$$f_5^3(1) = 3 \cdot 1 \% 5 = 3$$

$$f_5^3(2) = 3 \cdot 2 \% 5 = 1$$

$$f_5^3(3) = 3 \cdot 3 \% 5 = 4$$

$$f_5^3(4) = 3 \cdot 4 \% 5 = 5$$

Notice that every element in S_5 was ‘hit’; that is, the map is *onto*. We tried another example: say, $p = 7$ and $5 \in S_7$. We have
\[f_5^7(1) = 5 \cdot 1 \mod 7 = 5 \]
\[f_5^7(2) = 5 \cdot 2 \mod 7 = 3 \]
\[f_5^7(3) = 5 \cdot 3 \mod 7 = 1 \]
\[f_5^7(4) = 5 \cdot 4 \mod 7 = 6 \]
\[f_5^7(3) = 5 \cdot 5 \mod 7 = 4 \]
\[f_5^7(4) = 5 \cdot 6 \mod 7 = 2 \]

Again, we see that \(f_5^7 \) is onto.

Megan made the following conjecture:

Conjecture: Suppose \(p \) is prime and \(a \in S_p \). Then the map \(f_p^a : S_p \rightarrow S_p \) is onto.

To help prove this conjecture, we made the following observation:

Observation: Let \(f : S \rightarrow T \) be a function and suppose \(S \) and \(T \) have the same number of elements. If \(f \) is one-to-one then \(f \) is onto.

This observation follows from the **Pigeonhole Principle**, which says that if you have \(n + 1 \) pigeons to put into \(n \) holes, at least two pigeons have to go into the same hole. To see how this applies to the function \(f : S \rightarrow T \), let’s say that both \(S \) and \(T \) have \(n \) elements. If \(f \) is not onto, then the elements of \(S \) are being mapped by \(f \) into a subset of \(T \) consisting of at most \(n - 1 \) elements. Thus, at least two elements of \(S \) must be mapped to the same element, contradicting that \(f \) is one-to-one.

Now let’s prove Megan’s conjecture:

Theorem: Let \(p \) be prime and \(a \in S_p \). Then \(f_p^a : S_p \rightarrow S_p \) is onto.

Proof: By the observation, it suffices to prove that \(f_p^a \) is one-to-one. Suppose \(f_p^a(i) = f_p^a(j) \) for some elements \(i \neq j \) in \(S_p \). Then \(ai \equiv aj \mod p \), which means \(ai \equiv aj \mod p \). Since \(a \not\equiv 0 \mod p \), by cancellation we have that \(i \equiv j \mod p \). But, since \(i \) and \(j \) are between 1 and \(p - 1 \), this means that \(i = j \), a contradiction. Hence, \(f_p^a \) must be one-to-one (and thus onto). \(\square \)

We now are in a position to use Megan’s conjecture to give another proof of Fermat’s Theorem:

Theorem: Let \(p \) be a prime and \(a \) an integer such that \(a \not\equiv 0 \mod p \). Then \(a^{p-1} \equiv 1 \mod p \).

Proof: It is enough to prove this in the case \(a \in S_p \), since every integer not divisible by \(p \) is congruent to it’s remainder upon dividing by \(p \). By Megan’s conjecture, \(f_p^a : S_p \rightarrow S_p \) is one-to-one and onto, we have

\[
S_p = \{1, 2, \ldots, p - 1\} = \{f_p^a(1), f_p^a(2), \ldots, f_p^a(p - 1)\} = \{a \% p, 2a \% p, \ldots, (p - 1)a \% p\}.
\]
Since the elements in these sets are the same (with just the order scrambled), we get the following products are equal:

\[1 \cdot 2 \cdot \cdots \cdot (p - 1) = (a \% p) \cdot (2a \% p) \cdots ((p - 1)a \% p). \]

Going modulo \(p \), we have

\[(p - 1) \equiv (p - 1)a^{p-1} \pmod{p}. \]

But since \(p \) is prime, \(p \) does not divide \((p - 1)\), so \((p - 1) \not\equiv 0 \pmod{p}\). By cancellation, we then have

\[1 \equiv a^{p-1} \pmod{p}. \]

\[\square \]

We now make the following definition:

Definition: Let \(p \) be prime and \(a \) an integer not divisible by \(p \). The order of \(a \) modulo \(p \), denoted by \(o_p(a) \), is defined to be the smallest positive integer \(k \) such that \(a^k \equiv 1 \pmod{p} \).

By definition, \(o_p(a) \geq 1 \) for all \(a \not\equiv 0 \pmod{p} \). By Fermat’s Theorem, we also have \(o_p(a) \leq p - 1 \). However, it is possible for \(o_p(a) \) to be less than \(p - 1 \). For instance, \(o_p(1) = 1 \) no matter what \(p \) is. Here are some more examples:

Example: \(o_7(2) = 3 \), since \(2^3 = 8 \equiv 1 \pmod{7} \) and \(2^k \not\equiv 1 \pmod{7} \) for \(k = 1, 2 \).

Example: \(o_5(3) = 4 \), since \(3^4 = 81 \equiv 1 \pmod{5} \) and \(3^k \not\equiv 1 \pmod{5} \) for \(k = 1, 2, 3 \).

Here is your homework for Thursday:

Homework:

1. Find \(o_7(a) \) for \(1 \leq a \leq 6 \).
2. Prove \(o_p(p - 1) = 2 \) if \(p \) is an odd prime.
3. Prove that \(o_p(a) \mid p - 1 \) for all \(1 \leq a \leq p - 1 \)

On Thursday, we began by doing these homework problems:

Example: Find \(o_7(a) \) for \(1 \leq a \leq 6 \).

The values are given in the following table:

<table>
<thead>
<tr>
<th>(a)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(o_7(a))</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

For the second homework problem, we noted that \(p - 1 \equiv -1 \pmod{p} \). Hence,

\[(p - 1)^2 \equiv (-1)^2 \pmod{p} \]
\[\equiv 1 \pmod{p}. \]

This says that \(o_p(p - 1) \leq 2 \). But if \(o(p - 1) = 1 \) then \(p - 1 \equiv 1 \pmod{p} \), which means \(p = 2 \), contradicting that \(p \) is odd.

Theorem: Let \(p \) be a prime and \(a \not\equiv 0 \pmod{p} \). Then \(o_p(a) \mid p - 1 \).
Proof: Let \(n = o_p(a) \). By the division theorem, we have that \(p - 1 = nq + r \) where \(0 \leq r \leq n - 1 \). We want to show \(r = 0 \). Suppose \(r > 0 \). Then since \(a^n \equiv 1 \pmod{p} \) (by the definition of \(o_p(a) \) and \(a^{p-1} \equiv 1 \pmod{p} \) (by Fermat), we have

\[
1 \equiv a^{p-1} \pmod{p} \\
\equiv a^{nq+r} \pmod{p} \\
\equiv (a^n)^q \cdot a^r \pmod{p} \\
\equiv (1)^q \cdot a^r \pmod{p} \\
\equiv a^r \pmod{p}
\]

But this says that \(a^r \equiv 1 \pmod{p} \) and \(1 \leq r \leq n - 1 \). But \(n = o_p(a) \), so \(n \) is the smallest positive integer such that \(a^n \equiv 1 \pmod{p} \). To avoid this contradiction, we must have \(r = 0 \). Hence, \(p - 1 = nq \) and so \(n \mid p - 1 \). \(\square \)

Next, we changed subjects and talked about multiplicative inverses. Recall that in the usual real number arithmetic to divide by a nonzero number \(a \) is the same as multiplying by \(\frac{1}{a} \) or \(a^{-1} \). The important property of \(a^{-1} \) is that \(a^{-1} \cdot a = 1 \). For example, to solve an equation of the form \(ax = b \), we just multiply both sides by \(a^{-1} \) to find the solution:

\[
ax = b \\
\Rightarrow a^{-1}(ax) = a^{-1}b \\
\Rightarrow (a^{-1}a)x = a^{-1}b \\
\Rightarrow 1 \cdot x = a^{-1}b \\
\Rightarrow x = a^{-1}b.
\]

The mathematical term for \(a^{-1} \) is the *multiplicative inverse*, or simply *inverse*, of \(a \).

This leads to the question of whether inverses exist in the “modular world.” We made the following definition:

Definition: Let \(a \) and \(m \) be integers with \(m > 1 \). We say that an integer \(b \) is an *inverse* for \(a \) modulo \(m \) if \(ba \equiv 1 \pmod{m} \). In this case, we write \(b \equiv a^{-1} \pmod{m} \).

Example: Note that 2 is an inverse for 6 modulo 11 since \(2 \cdot 6 \equiv 1 \pmod{11} \).

Example: Note that 6 does not have an inverse modulo 4, since \(6k \not\equiv 1 \pmod{4} \) for \(k = 0, 1, 2, 3 \).

This brings up the obvious question:

Question: When does an integer \(a \) have an inverse modulo \(m \)?

To answer this question, we looked at our multiplication tables modulo \(m \) for \(m = 3, 4, 5, 6, 7, 8, 9 \). The multiplication tables for \(1 \leq m \leq 7 \) were listed on October 16th. Here are the tables for \(m = 8 \) and \(m = 9 \) (which we did in class):
An element has an inverse if and only if there is a 1 which appears in its row. For example, in the modulo 8 table, we see that 1, 3, 5, 7 have inverses, but 2, 4, 6 (and obviously 0) do not. Similarly, in the $m = 9$ table, we have 1, 2, 4, 5, 7, 8 have inverses while 3 and 6 do not. Based on this evidence (together with the evidence from the other tables), Lisa made the following conjecture:

Conjecture: (Lisa) Let a, m be integers with $m \geq 2$. Then a has an inverse modulo m if and only if $\gcd(a, m) = 1$.

And actually, Lisa was able to come up with a proof of one direction of this conjecture:

Theorem: Let a and m be integers, with $m \geq 2$. Suppose $\gcd(a, m) = 1$. Then a has an inverse modulo m.

Proof: (Lisa) Since $\gcd(a, m) = 1$ we have $ax + my = 1$ for some integers x and y. Then $my = ax - 1$ so $m \mid (ax - 1)$. Hence, $ax \equiv 1 \pmod{m}$, which means x is an inverse for a modulo m. \hfill \Box

In fact, Lisa’s proof suggests a method for finding the inverse of a modulo m if $\gcd(a, m) = 1$. First, use the Euclidean Algorithm to find integers x and y such that $ax + my = 1$. Then the proof above shows that x is an inverse for a modulo m.

Question: What is $(13)^{-1} \pmod{1000}$?

Answer: (Mike) First, use the Euclidean algorithm to find $\gcd(13, 1000)$:

1. $1000 = 13(76) + 12$
2. $13 = 12(1) + 1$

So $1 = \gcd(13, 1000)$. For the back substitution, let $a = 1000$ and $b = 13$:

\[
\begin{align*}
 a &= b(76) + 12 \quad \Rightarrow \quad 12 = a - 76b \\
 b &= (a - 76b)(1) + 1 \quad \Rightarrow \quad 1 = 77b - a
\end{align*}
\]

Thus, $77(13) + 1000(-1) = 1$ which implies $(77)(13) \equiv 1 \pmod{1000}$. Hence, $13^{-1} \equiv 77 \pmod{1000}$.

Example: Let’s use the above inverse to solve the following equation for x:

$$13x + 88 \equiv 762 \pmod{1000}.$$

First, we subtract 762 from both sides to obtain:

$$13x \equiv 238 \pmod{1000}.$$
Now multiply both sides 77, which is the inverse of 13 modulo 1000:

\[
x \equiv (77)(13)x \pmod{1000}
\equiv (77)(236) \pmod{1000}
\equiv 18326 \pmod{1000}
\equiv 326 \pmod{1000}
\]

Hence, \(x \equiv 326 \pmod{1000} \) is the solution.

No homework for Tuesday except to work on Test # 5.