3.1. **LINEAR MODELS**

GROW AND DECAY

\[\frac{dx}{dt} = Kx, \quad x(t_0) = x_0 \quad \text{(1)} \]

Example 1.

A culture initially has \(P_0 \) number of bacteria. At \(t = 1 \)h the number of bacteria is measured to be \(\frac{3}{2} P_0 \). If the rate of growth is proportional to the number of bacteria \(P(t) \) present at time \(t \), determine the time necessary for the number of bacteria to triple.

Solution:

\[\frac{dp}{dt} - Kp = 0 \]

Integrating factor \(\mu(t) = e^{\int -K \, dt} = e^{-Kt} \).

\[d[\mu p] = 0 \]

\[e^{-Kt}p = c \Rightarrow p = c \cdot e^{Kt} \]

We need to find \(c \) and \(K \).
\[t = 0 : \quad p_0 = c \]
\[t = 1 : \quad \frac{3}{2} p_0 = p_0 \cdot e^k \]

\[e^k = \frac{3}{2} \quad \Rightarrow \quad k = \ln \frac{3}{2} \approx 0.4055 \]

We need to find \(t \) such that

\[P(t) = p_0 \cdot e^{k\cdot t} = 3p_0 \]

\[e^{(\ln \frac{3}{2})t} = 3 \]

\[\ln \frac{3}{2} t = \ln 3 \]

\[t = \frac{\ln 3}{\ln \frac{3}{2}} \approx 2.71 \text{ (h).} \]

Half-Life. In physics the **half-life** is a measure of the stability of a radioactive substance. This is simply the time it takes for \(\frac{1}{2} \) of the atoms in the initial amount \(A_0 \) to disintegrate, or transmute, into the atoms of another element.

Example. A breeder reactor converts relatively stable uranium-238 into isotope plutonium-239. After 15 years it is determined that 0.0452% of the initial amount \(A_0 \) of plutonium has disintegrated. Find the half-life of this isotope if the rate
of disintegration is proportional to the amount remaining.

Solution:

\[
\frac{dA}{dt} = KA, \quad A(0) = A_0
\]

\[A(t) = A_0 e^{Kt}.\]

If 0.043\% of the atoms of \(A_0\) have disintegrated, then 99.957\% of the substance remains. We can find \(K\):

\[\Rightarrow 0.99957A_0 = A_0 e^{15K}\]

\[\Rightarrow K = \frac{1}{15} \ln 0.99957 \approx -0.00002867.\]

Find the half-life \(t\):

\[
\frac{1}{2} A_0 = A_0 e^{-0.00002867 t}
\]

\[\Rightarrow \frac{1}{2} = e^{-0.00002867 t}\]

\[\Rightarrow t = \frac{\ln \frac{1}{2}}{-0.00002867} = \frac{\ln 2}{0.00002867} \approx 24,180 \text{ yr.}\]

Reading exercise: (Example about Age of Fossil)
NEWTON'S LAW OF COOLING/WARMING

\[\frac{dT}{dt} = K(T - T_m) \]

where \(T_m \) is the temperature of the medium around the object.

Example 4. When a cake removed from an oven, its temperature is measured at 300°F. Three minutes later the temperature is 200°F. How long will it take for the cake to cool off to 100°F? The room temperature is 70°F.

Solution:

\[\frac{dT}{dt} = K(T - T_m), \quad T(0) = 300 \]

\[\Rightarrow \frac{dT}{(T - 70)} = Kdt \quad \text{(separable eq.)} \]

\[\Rightarrow \ln|T - 70| = kt + C_1 \]

\[\Rightarrow T - 70 = Ce^kt \]

\[\Rightarrow t = C\cdot e^{kt} + 70 \]

\[t = 0 \]

\[300 = C + 70 \Rightarrow C = 230 \]

\[t = 3 \]

\[200 = 230\cdot e^{3k} \]

\[\Rightarrow e^{3k} = \frac{130}{230} \Rightarrow k = \frac{1}{3} \ln \left(\frac{130}{230} \right) \approx -0.19018 \]
Find t

$$100 = 70 + 230 e^{-0.19018t}$$

(⇒) $e^{-0.19018t} = \frac{30}{230}$

(⇒) $-0.19018t = \ln \frac{30}{230}$

(⇒) $t = \frac{\ln \frac{230}{3}}{0.19018} \approx 10.7$ (mins)

MIXTURE:

Example: A large tank holds 200 gals of brine solution. Brine is being pumped into the tank at the rate 4 gal/min. The concentration of the salt in the inflow is 3 lb/gal. The mixture is also pumped out at the rate 4 gal/min.

$$R_{in} = (4 \text{ gal/min}) (3 \text{ lb/gal}) = 12 \text{ lb/min}$$

$$R_{out} = \left(\frac{A}{200} \text{ lb/gal} \right) (4 \text{ gal/min})$$

$$= \frac{A}{50} \text{ lb/min}$$

Assume that 50 pounds of salt were dissolved initially in the 200 gallons, how much salt in the tank after a long time?
Solution.

Recall: \(\frac{dA}{dt} = R \text{in} - R \text{out} \)

\(\frac{dA}{dt} = 12 - \frac{A}{50} \)

\(\Rightarrow \frac{dA}{dt} + \frac{A}{50} = 12, \quad A(0) = 50. \)

Integrating factor is \(e^{\frac{t}{50}} \)

\(\Rightarrow d \left[A e^{\frac{t}{50}} \right] = 12 e^{\frac{t}{50}} \)

\(\Rightarrow A e^{\frac{t}{50}} = 600 e^{\frac{t}{50}} + C. \)

\(\Rightarrow A = 600 + C e^{-\frac{t}{50}}. \)

\[t = 0 \]

\(50 = 600 + C. \)

\(\Rightarrow C = -550 \)

So \(A(t) = 600 - 550 e^{-\frac{t}{50}}. \)

Let \(t \to \infty \), \(A(t) \to 600. \)

It is as we expect, as after a long time the concentration of solution in the tank is equal to the concentration of inflow.

So we have total \((200 \text{ gal}) (3.15 \text{ lb/gal}) = 630 \text{ lb}. \)
Example 6: We now assume that the mixture was pumped out at a slower rate of 3 gal/min. Then the liquid will accumulate in the tank at rate

\[(4 - 3) \text{ gal/min} = 1 \text{ gal/min}\]

new \(R_{out} = \left(\frac{A}{200 + t} \right) \cdot 3 = \frac{3A}{200 + t} \text{ (lb/min)} \]

\[\Rightarrow \text{our eq becomes} \]

\[\frac{dA}{dt} = 12 - \frac{3A}{200 + t} \]

\[\Rightarrow \frac{dA}{dt} + \frac{3}{200 + t} A = 12 \]

integrating factor is \(\exp \left(\int \frac{3}{200 + t} \, dt \right) = (200 + t)^3 \).

\[\Rightarrow \frac{d}{dt} \left((200 + t)^3 A \right) = 12 (200 + t)^3 \]

\[\Rightarrow (200 + t)^3 A = 3 (200 + t)^4 + C \]

\[\Rightarrow A = \frac{3(200 + t)}{(200 + t)^3} + \frac{C}{(200 + t)^3} \]

\[\| t = 0 \| : \quad 50 = 600 + \frac{C}{200} \]

\[\Rightarrow C = -8 \times 10^6 \]

\[\Rightarrow A(t) = 600 + 3t - \frac{8 \times 10^6}{(200 + t)^3} \to \infty \text{ as } t \to \infty. \]
SERIES CIRCUITS.

Consider an LR-series circuit:

\[
\begin{array}{c}
\text{E} \\
L \\
R \\
\end{array}
\]

By Kirchhoff’s second law we have

\[L \frac{di}{dt} + Ri = E(t) \quad (7)\]

Similar an RC-series circuit give

\[R \frac{dq}{dt} + \frac{1}{C} q = E(t) \quad (8)\]

Example 7. A 12-volt battery is connected to a series circuit in which the inductance is \(\frac{1}{2}\) henry and the resistance is 10 ohms. Determine the current \(i\) if the initial current is 0.

Solution:

\[\frac{1}{2} \frac{di}{dt} + 10i = 12, \quad i(0) = 0\]
Integrating factor $\mu(t) = e^{20t}$

$$\frac{d}{dt} \left[e^{20t} i \right] = 24 e^{20t}$$

$$\Rightarrow i(t) = \frac{6}{5} + C e^{-20t}$$

$$\begin{array}{l}
\text{\underline{$i(0)$}} \\
\quad C = -\frac{6}{5}
\end{array}$$

$$\Rightarrow i(t) = \frac{6}{5} - \frac{6}{5} e^{-20t}.$$