Section 2.1. Solution Curve Without a Solution

1. DIRECTED FIELDS.

As we have seen in Section 1.2 that whenever \(f(x,y) \) and \(\frac{df}{dy} \) satisfy certain continuity conditions, qualitative question about existence and uniqueness of solution can be answered.

In this section we will see that other qualitative question about properties of solutions:
- How does a solution behave near a certain point?
- How does a solution behave asymptotically?

Recall: A derivative \(\frac{dy}{dx} \) of a differentiable function \(y = y(x) \) gives slopes of tangent lines at points on it graph.

Consider a first-order ODE (in the normal form)

\[
\frac{dy}{dx} = f(x,y) \quad (1)
\]
The function \(f(x,y) \) is usually called the **slope function** or the **rate function**.

If we evaluate \(f \) over a rectangular grid of points in the \(xy \)-plane, and draw a small arrow, called a **lineal element**, at each point \((x,y)\) of the grid with slope \(f(x,y) \). (A line element is usually oriented by increasing direction of \(x \).) Then the collection of all these line elements is called a **direction field** (or a **slope field**) of the ODE \(\frac{dy}{dx} = f(x,y) \).

Visually, the direction field suggests the shape of a family of solution curves of the diff. eq., and consequently, it may be possible to see at glance certain qualitative aspects of the solutions - regions in the plane, e.g., in which a solution has unusual behavior.

A single solution curve passes through a direction field must follow the flow pattern of the field: it tangent to a lineal element when it intersects a point of the grid.

In general, a finer grid gives a better approx of the solution curve.

Example: The direction field of the equation

\[
\frac{dy}{dx} = 0.2xy
\]

can tell us when \(|f(x,y)|\) increases as \(|x|\) and \(y\) increase, when \(f(x,y)\) is positive/negative.
This suggest the behavior of a solution curve.

Example: The direction field of the diff. eq.

\[\frac{dy}{dx} = \sin (x + y) \]

Example: The direction field of

\[\frac{dy}{dx} = \sin y \]

2. **Autonomous First-Order ODEs.**

An ODE in which the independent variable does not appear explicitly is said to be autonomous. If \(x \) denotes the independent variable, then an autonomous ODE has form

\[F(y, y', y'', \ldots) = 0. \]

In particular, a first-order autonomous ODE has form

\[F(y, y') = 0 \]

or

\[\frac{dy}{dx} = f(y). \quad (2) \]

For example, \[\frac{dy}{dx} = \sin y \] is autonomous

while \[\frac{dy}{dx} = 4x y^{1/2} \] is nonautonomous.
All the equations in section 1.3 are autonomous.

\[
\frac{dP}{dt} = kP, \quad \frac{dx}{dt} = kx(\mu+1-x), \quad \frac{dT}{dt} = k(T-T_m)
\]

\[
\frac{dA}{dt} = 12 - \frac{A}{50}, \ldots
\]

Critical Points. The zeros of a first-order autonomous DE (2) are very important. We say that a real number \(c\) is a critical point of the eq (2) if it is a zero of \(f\). (\(f(c) = 0\)).

A critical point is also called an equilibrium point or a stationary point. Observe that when we plug \(y(x) = c\) into (2) then both sides of the equation are zero. This means:

"If \(c\) is a critical point of (2), then \(y(x) = c\) is a constant solution of the autonomous DE."

The solution \(y(x) = c\) is called an equilibrium solution.

Example: Consider the diff. eq.

\[
\frac{dP}{dt} = P(a-bP)
\]

where \(a, b\) are positive constant.
\(\text{Interval} \quad \text{Sign of } f(p) \quad P(+) \quad \text{Arrow} \\
(\infty, 0) \quad - \quad \Rightarrow \quad \downarrow \\
(0, \frac{a}{b}) \quad + \quad \Rightarrow \quad \uparrow \\
(\frac{a}{b}, \infty) \quad - \quad \Rightarrow \quad \downarrow \\
\Rightarrow \text{Phase portrait of DE:} \\
\quad \quad \downarrow \quad \text{p-axis} \\
\quad \quad \uparrow \quad \frac{a}{b} \\
\quad \quad \downarrow \quad \frac{0}{b} \\
\quad \downarrow \quad 0 \\
\)

SOLUTION CURVE.

Without solving an autonomous DE, we can say pretty much about its solution curves.
- Since the function \(f \) in (2) is independent from \(x \), we can consider \(f \) defined for \(-\infty < x < \infty \) or for \(0 < x < \infty \).
- Since \(f \) and \(f' \) are continuous functions of \(y \) on some interval I of the y-axis, Theorem 1.2.1 hold for some horizontal strip \(R \) corresponding to I, so through any point \((x_0, y_0) \in R\) there passes only one solution curve of (2).
- For sake of discussion, we assume that (2) has exactly two equilibrium \(y(x) = c_1 \) and \(y(x) = c_2 \) for \(c_1 < c_2 \). These solution curves partition
the plane into 3 parts R_1, R_2, R_3.

Without proof we can say the follows about nonconstant solution $y(x)$ of (2).

1. If $(x_0, y_0) \in R_i$ (i = 1, 2, 3) and $y(x)$ is a solution whose graph passes through (x_0, y_0), then the graph remain in R_i for all x.

2. By the continuity of f, we must have either $f(y) > 0$ or $f(y) < 0$ for all y in R_i.

3. Since $\frac{dy}{dx} = f(y(x))$ is either positive or negative in R_i, $y(x)$ is strictly monotonic.

4. If $y(x)$ is bounded above by a critical point c_i, then the graph of $y(x)$ must approach the graph of $y(x) = c_i$ either as $x \to \infty$ or as $x \to -\infty$.

Example: Solution of $\frac{dy}{dx} = (y-1)^2$.
ATTRACTORS AND REPPELLERS.

Suppose that \(y(x) \) is a nonconstant solution of the autonomous differential equation given in (2) and that \(c \) is a critical point of the DE.

There are 3 types of behavior that \(y(x) \) can exhibit near \(c \).

\[
\begin{align*}
\text{(a)} & & \text{(b)} & & \text{(c)} & & \text{(d)} \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
 & & & & & & \\
\bullet & & \bullet & & \bullet & & \bullet \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
& & & & & & \\
& & & & & & \\
\bullet & & \bullet & & \bullet & & \bullet \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
& & & & & & \\
& & & & & & \\
\bullet & & \bullet & & \bullet & & \bullet
\end{align*}
\]

(a) Two arrows point toward \(c \).

\(\Rightarrow \) All solutions \(y(x) \) of (2) that start from an initial point \((x_0, y_0)\) sufficiently near \(c \) exhibit the asymptotic behavior \(\lim_{x \to \infty} y(x) = c \). We say \(c \) is asymptotically stable, and \(c \) is also called an attractor.

(b) Two arrows point away \(c \).

\(\Rightarrow \) All solutions starting from \((x_0, y_0)\) will move away from \(c \) as \(x \) increases. So, \(x \) is unstable, and \(x \) is called a repeller.

(c) and (d) \(c \) is semi-stable.
AUTONOMOUS DES AND DIRECTION FIELD

⊕ All linear elements along a horizontal strip have the same slope.
⊕ The linear elements along a vertical strip do not vary.

TRANSLATION PROPERTY.

If \(y(x) \) is a solution of \(\frac{dy}{dx} = f(y) \), then \(y_1(x) = y(x-k) \), \(k \) is a constant, is also a solution.

Example: \(y(x) = e^x \) is a solution of \(y' = y \).

Of course \(y(x) = e^x + 6 \) is also a solution.