CAUCHY-EULER EQUATIONS

We will study the solution of the following eq.

\[a_n x^n \frac{d^n y}{dx^n} + a_{n-1} x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \cdots + a_1 x \frac{dy}{dx} + a_0 y = g(x) \]

where \(a_0, a_1, \ldots, a_n \) are all constants. This equation is known as **Cauchy-Euler equation** to honor two mathematicians: Augustin-Louis Cauchy (1789–1857) and Leonhard Euler (1707–1783).

METHOD OF SOLUTION FOR HOMOGENEOUS EQ

We try a solution \(y = x^m \), where \(m \) is to be determined.

\[= a_k x^k \frac{d^k y}{dx^k} = a_k x^k m(m-1)\cdots(m-k+1) x^{m-k} \]

\[= a_k m(m-1)\cdots(m-k+1) x^m. \]

Let us work in detail for case \(n = 2 \):

\[a x^2 \frac{d^2 y}{dx^2} + b x \frac{dy}{dx} + c y = 0 \quad (2) \]

The auxiliary eq. is

\[a m(m-1) + b m + c = 0 \quad (3) \]
\[am^2 + (b-a)m + c = 0 \]

CASE I: The eq (3) has two distinct real roots, say \(m_1 \) and \(m_2 \).

In this case \(y_1 = x^{m_1} \) and \(y_2 = x^{m_2} \) form a fundamental set of solutions. Hence (2) has the general solution:

\[y = C_1 x^{m_1} + C_2 x^{m_2} \]

Example: Solve

\[x^2 \frac{d^2 y}{dx^2} - 6 \frac{dy}{dx} + 12 = 0 \]

The auxiliary eq is \(m^2 - 7m + 12 = 0 \)

\[\Rightarrow (m - 3)(m - 4) = 0 \]

\[m_1 = 3 \quad ; \quad m_2 = 4 \]

\[\Rightarrow \text{The general solution is} \]

\[y = C_1 x^3 + C_2 x^4 \]

CASE II: Repeated Real Root.

Eq (3) has root \(m_1 = m_2 = \frac{-(b-a)}{2a} \)

We have the first solution \(y_1 = x^{m_1} \), and we would like to find the second solution.

We bring (2) into the standard form

\[\frac{d^2 y}{dx^2} + \frac{b}{a} \frac{dy}{dx} + \frac{c}{ax^2} y = 0 \]
\[p(x) = \frac{b}{a x}, \quad \int p(x) \, dx = \int \frac{b}{a x} \, dx = \frac{b}{a} \ln x, \]

Thus
\[y_2 = x^{m_1} \int \frac{e^{-(b/a) \ln x}}{x^{2m_1}} \, dx \]

(reduction of order formula, Section 4.2, pp 133)
\[= x^{m_1} \int x^{-b/a} x^{-2m_1} \, dx \]
\[= x^{m_1} \int x^{-b/a} \frac{(b-a)/a}{x} \, dx \]
\[= x^{m_1} \int \frac{dx}{x} = x^{m_1} \ln x. \]

The general solution of the Cauchy-Euler eq is:
\[y = C_1 x^{m_1} + C_2 x^{m_1} \ln x. \]

Example: \[3 x^2 \cdot y'' + 9 x \cdot y' + 3 y = 0 \]

The auxiliary eq is:
\[3 m^2 + (9 - 3) m + 3 = 0 \]
\[(\Rightarrow) \quad 3 (m+1)^2 = 0 \]
\[\Rightarrow \quad \text{The general solution is} \]
\[y = C_1 x^{-1} + C_2 x^{-1} \ln x. \]
CASE III: CONJUGATE COMPLEX ROOTS

If the auxiliary eq (3) has two conjugate complex roots \(m_1 = \alpha + i\beta, \ m_2 = \alpha - i\beta \) \((\alpha, \beta \text{ are real})\)

Then (2) has the general solution

\[y = C_1 e^{\alpha + i\beta} + C_2 e^{\alpha - i\beta} \]

(4)

We would like to find two linearly independent real solutions of (2).

We have

\[e^{i\beta} = (e^{\ln x})^{i\beta} = e^{i\beta \ln x} \]

By Euler identity:

\[e^{i\beta} = \cos (\beta \ln x) + i \sin (\beta \ln x) \]

\[e^{-i\beta} = \cos (\beta \ln x) - i \sin (\beta \ln x) \]

\[e^{i\beta} + e^{-i\beta} = 2 \cos (\beta \ln x) \]

\[e^{i\beta} - e^{-i\beta} = 2i \sin (\beta \ln x) \]

Take \(C_1 = C_2 = \frac{1}{2} \) and \(C_1 = \frac{1}{2i}, \ C_2 = -\frac{1}{2i} \) in (4)

We get two particular solutions

\[y_1 = x^2 \cos (\beta \ln x), \ y_2 = x^2 \sin (\beta \ln x). \]
Thus the general solution is this case can be re-written as
\[y = x^{\frac{1}{2}} [c_1 \cos(E \ln x) + c_2 \sin(E \ln x)]. \]

Example: Solve the following IVP

Solution:
\[4x^2 y'' + 17 y = 0, \quad y(1) = -1, \quad y'(1) = -\frac{1}{2}. \]

The auxiliary eq is
\[4m^2 - 4m + 17 = 0. \]

There are two complex roots: \(m_1 = \frac{1}{2} + 2i \) and \(m_2 = \frac{1}{2} - 2i \). The general solution is
\[y = x^{\frac{1}{2}} [c_1 \cos(2 \ln x) + c_2 \sin(2 \ln x)]. \]

By \(y(1) = -1 \), \(c_1 = -1 \).
By \(y'(1) = \frac{1}{2} \), \(c_2 = 0 \).

\[\Rightarrow \quad \text{The solution is} \quad y = -x^{\frac{1}{2}} \cos(2 \ln x). \]

Example Solve
\[x^3 y''' + 5x^2 y'' + 7xy' + 8y = 0. \]

Solution
We want to find a solution of form \(y = x^m \).

\[y' = mx^{m-1}, \quad y'' = m(m-1)x^{m-2}, \quad y''' = m(m-1)(m-2)x^{m-3} \]

\[\Rightarrow \quad \text{the auxiliary eq} \quad (m+2)(m^2+4) = 0 \]
There are 3 roots:

\[m_1 = -2 \]
\[m_2 = 2i \]
\[m_3 = -2i \]

\[y = c_1 x^{-2} + c_2 \cos(2 \ln x) + c_3 \sin(2 \ln x). \]

\[\text{NONHOMOGENEOUS EQS} \]

Example: Solve

\[x^2 y'' - 3x y' + 3y = 2x^4 e^x. \]

Solution:

The auxiliary eq:

\[(m-1)(m-3) = 0 \]

\[y_c = c_1 x + c_2 x^3. \]

We would like to find \(y_p = u_1 y_1 + u_2 y_2 \)

\[u_1' = \frac{w_2}{w} = -\frac{y_2 f(x)}{W} \]

\[u_2 = \frac{w_1}{w} = \frac{y_1 f(x)}{W} \]

\[W = \begin{vmatrix} x & x^3 \\ 1 & 3x^2 \end{vmatrix} = 2x^3 \]

\[u_1' = -x^2 e^x \quad \Rightarrow \quad u_1 = -x^2 e^x + 2x e^x - e^x \]
\[u_2' = e^x \quad \Rightarrow \quad u_2 = e^x \]
\(y_p = (-x^2e^x + 2xe^x - 2e^x)x + e^x x^2 = 2xe^x - 2xe^x \)

The general solution is

\[y = y_c + y_p = c_1x + c_2x^3 + 2xe^x - 2xe^x. \]

REDUCTION TO CONSTANT COEFFICIENTS.

Example: solve
\[x^2y'' - xy' + y = (\ln x \text{ on } (0, \infty)) \]

Solution: substitute \(x = e^t \), or \(t = \ln x \)

\[
\frac{dy}{dt} = \frac{dx}{dt} \frac{dy}{dx} = \frac{1}{x} \frac{dy}{dt} \quad \text{chain rule}
\]

\[
\frac{d^2y}{dx^2} = \frac{1}{x} \frac{d}{dx} \left(\frac{dy}{dt} \right) + \frac{dy}{dt} \left(-\frac{1}{x^2} \right)
\]

\[
= \frac{1}{x} \left(\frac{d^2y}{dt^2} \frac{1}{x} \right) + \frac{dy}{dt} \left(-\frac{1}{x^2} \right)
\]

\[
= \frac{1}{x^2} \left(\frac{d^2y}{dt^2} - \frac{dy}{dt} \right)
\]

Our eq becomes

\[
\frac{d^2y}{dt^2} - 2\frac{dy}{dt} + y = t \quad (\text{auxiliary eq } m^2 - 2m + 1 = 0)
\]

\[y_c = c_1e^t + c_2te^t \]

\[L_1 = D^2 \]

\[L_1^{-1} D^2 (D-1)^2 y = 0 \]

\[\Rightarrow \text{we try } y_p = A + Bt \]
\[-2B + A + B t = t \]

\[\Rightarrow \quad A = 2, \quad B = 1 \]

Thus

\[y = y_c + y_p = C_1 e^t + C_2 t e^t + 2 + t \]

Finally, substitute back \(t = \ln x \), we get

\[y = C_1 x + C_2 x \ln x + 2 + \ln x \]

Remark:

1. The previous example worked for \(x > 0 \) (\(x = e^t \)).

 If \(x < 0 \), we substitute \(t = -x \) and use the chain rule to have

 \[\frac{dy}{dx} = \frac{dy}{dt} \]

 \[\frac{d^2 y}{dx^2} = \frac{d^2 y}{dt^2} \]

 Then we can apply the above method.

2. The second-order eq:

 \[a (x - x_0)^2 \frac{d^2 y}{dx^2} + b (x - x_0) \frac{dy}{dx} + cy = 0 \]

 is also called a Cauchy-Euler eq.