4.2 Reduction of Order

In this section, we study the solution of second-order homogeneous differential equation
\[a_2(x) y'' + a_1(x) y' + a_0(x) y = 0. \quad (1) \]
In particular, we learn how to reduce the eq. to a first-order linear equation.

REDUCTION OF ORDER

Suppose that \(y_1 \) is a nontrivial solution of (1) on an interval \(I \). We seek a second solution \(y_2 \) so that \(y_1 \) and \(y_2 \) are linearly independent on \(I \). (If so, we know the general solution of (1) as \(y = c_1 y_1 + c_2 y_2 \).)

If \(y_1 \) and \(y_2 \) are linearly independent, then \(\frac{y_2}{y_1} \) is not a constant on \(I \), that is \(\frac{y_2(x)}{y_1(x)} = u(x) \) or \(y_2(x) = u(x) y_1(x) \).

The function \(u(x) \) can be found by substituting \(y_2(x) = u(x) y_1(x) \) into the given DE. This method is called reduction of order because we must solve a linear first-order differential equation to find \(u \).

Example. Given that \(y_1 = e^x \) is a solution of \(y'' - y = 0 \) on the interval \(I = (-\infty, \infty) \), use reduction of order to find a second solution \(y_2 \) that is linearly independent with \(y_1 \).
Solution: If \(y = u(x) \), \(y_1(x) = u(x) e^x \), then

\[
y' = u e^x + e^x u', \quad y'' = u e^x + 2 e^x u' + e^x u''
\]

\[
\Rightarrow y'' - u = e^x (u'' + 2 u') = 0.
\]
Since \(e^x \neq 0 \), the last equation requires \(u'' + 2 u' = 0 \).
Substitute \(w = u' \), we have \(w' + 2w = 0 \), which is a first-order linear DE in \(w \).

Solve: \(w' + 2w = 0 \).

The integrating factor is \(e^{\int 2 \, dx} = e^{2x} \),

\[
\Rightarrow \frac{d}{dx} \left[w e^{2x} \right] = 0
\]

\[
\Rightarrow w = C_1 e^{-2x} \quad \text{or} \quad u' = C_1 e^{-2x}
\]

\[
\Rightarrow u = -\frac{1}{2} C_1 e^{-2x} + C_2.
\]
Thus

\[
y = u(x) e^x = -\frac{C_1}{2} e^{-x} + C_2 e^x.
\]

By choosing \(C_2 = 0 \) and \(C_1 = -2 \), we obtain the desired second solution, \(y_2 = e^{-x} \).
Because \(W(e^x, e^{-x}) \neq 0 \), the solutions are linearly independent on \((-\infty, \infty)\).

GENERAL CASE

We divide (1) by \(a_2(x) \) to obtain

\[
y'' + p(x) y' + Q(x) y = 0 \quad \text{(3)}
\]
where \(p(x) \) and \(q(x) \) are continuous on some interval \(I \).

Suppose \(y_1(x) \) is a known solution of (3) on \(I \) and that \(y_1(x) \neq 0 \) for every \(x \in I \).

If we define \(y = y_1(x) \), then

\[
y' = u y_1' + y_1 u' \quad \text{and} \quad y'' = u y_1'' + 2 y_1' u' + y_1 u''
\]

Thus

\[
y'' + p y' + q y = u y_1'' + 2 y_1' u' + y_1 u'' + p (u y_1' + y_1 u') + q y
\]

\[
= u [y_1'' + p y_1' + q y_1] + y_1 u'' + (2 y_1' + p y_1) u'
\]

\[
= y_1 u'' + (2 y_1' + p y_1) u'.
\]

\(\Rightarrow \)

\[
y_1 u'' + (2 y_1' + p y_1) u' = 0 \quad \text{or}
\]

\[
y_1 w' + (2 y_1' + p y_1) w = 0 \quad (w = u'). \quad (4)
\]

The eq (4) are both linear and separable.

\(\Rightarrow \)

\[
\frac{d w}{w} + 2 \frac{y_1'}{y_1} \, dx + p \, dx = 0
\]

\[
\ln |w| + 2 \ln |y_1| = - \int p \, dx + C
\]

\(\Rightarrow \)

\[
\ln |w y_1^2| = - \int p \, dx + C
\]

or

\[
w y_1^2 = C_1 e^{- \int p \, dx}.
\]
Since \(w = u' \), we have
\[
U = c_1 \int \frac{-f p d x}{y_1^2} \, d x + c_2.
\]

By choosing \(c_1 = 1, \ c_2 = 0 \) we have
\[
y_2 = y_1(x) \int \frac{e^{-\int p(x) \, d x}}{y_1(x)} \, d x. \quad (5)
\]

Example: \(y_1 = x^2 \) is a solution of
\[
x^2 y'' - 3x y' + 4 y = 0 \quad (6)
\]
Find the general solution of the equation \((0, \infty)\).

Solution:
\[(6) \iff y'' - \frac{3}{x} y' + \frac{4}{x^2} y = 0\]

By (2), \(y_2 = x^2 \int \frac{e^{\int p(x) \, d x}}{x^4} \, d x \)
\[
= x^2 \int \frac{e^{\int p(x) \, d x}}{x^4} \, d x
= x^2 \int \frac{e^{\int 3 \, d x}}{x^4} \, d x
= x^2 \int \frac{e^{3 \ln x}}{x^4} \, d x
= x^2 \int \frac{x^3 \, d x}{x^4}
= x^2 \int \frac{d x}{x}
= x^2 \ln x.
\]
The general solution is
\[
y = c_1 y_1(x) + (x^2 \ln x) = c_1 x^2 + c_2 x^2 \ln x. \quad \square
\]