Let \(R \) be a commutative noetherian ring. Recall that the support of a finitely generated \(R \)-module \(M \) is the set of prime ideals \(p \) in \(R \) such that \(M_p \neq 0 \). For arbitrary modules and, more generally, for complexes of modules, there are various possible notions of support. Among them it is by now clear that the right definition, from a homological perspective, is the one introduced by Foxby in \([3]\), and recalled below. With this notion, Foxby \([3, 2.8, 2.9]\) proved that when \(X \) is a complex with \(H^n(X) = 0 \) for \(n \ll 0 \), a prime \(p \) is in the support of \(X \) if and only if the injective hull of \(R/p \) appears in the minimal semi-injective resolution of \(X \).

The purpose of this note is to describe examples that show that such a result does not extend to arbitrary complexes, contrary to expectation; see Remark 2.

Support. We write \(\text{Spec} \, R \) for the set of all the prime ideals in \(R \). For each \(p \) in \(\text{Spec} \, R \), the residue field \(R_p/R_p \) of the local ring \(R_p \) is denoted by \(k(p) \). The **support** of a complex \(X \) of \(R \)-modules is the subset

\[
\text{supp}_R X = \{ p \in \text{Spec} \, R \mid H(X \otimes_R k(p)) \neq 0 \}.
\]

This notion was introduced by Foxby \([3, p.157]\), under the name ‘small support’, to distinguish it from the ‘big support’, namely, the set \(\{ p \in \text{Spec} \, R \mid H(X)_p \neq 0 \} \). They coincide when the \(R \)-module \(H(X) \) is finitely generated—see \([3, 2.1]\)—but not in general. Also, \(\text{supp}_R X \) and \(\text{supp}_R H(X) \) need not coincide; see \([2, 9.4]\).

For each \(R \)-module \(M \) we write \(\text{ass}_R M \) for the set of its associated primes and \(E_R(M) \) for its injective hull; see Matsumura’s book \([9, \S\S 6,18]\).

Injective modules. Using \([9, 18.4]\), it is easy to verify that the support of \(E_R(R/p) \) equals \(\{ p \} \), which also equals \(\text{ass}_R E_R(R/p) \). By the structure theorem for injective \(R \)-modules \([9, 18.5]\) any injective \(R \)-module is of the form \(\bigoplus_{p \in \text{Spec} \, R} E(R/p)^{\mu(p)} \), where each \(\mu(p) \) is a non-negative integer (possibly \(\infty \)) which depends only on \(E \). It then follows that there are equalities:

\[
\text{supp}_R E = \{ p \in \text{Spec} \, R \mid \mu(p) \neq 0 \} = \text{ass}_R E.
\]

Date: May 12, 2009.

Key words and phrases. support, injective resolution, localization.

Chen was supported by Alexander von Humbold Stiftung. Iyengar was partly supported by NSF grant, DMS 0602498. This research was carried out at the University of Paderborn, where both authors were visiting; they thank the Institute for Mathematics there for hospitality.
It is this observation that suggests the possibility of reading the support of a complex from its injective resolutions.

Injective resolutions. We say that a complex I of R-modules is *homotopically injective* if $\text{Hom}_R(-, I)$ preserves quasi-isomorphisms; it is *semi-injective* if in addition each R-module I^n is injective. For example, a complex I of injective R-modules with $I^n = 0$ for $n \ll 0$ is semi-injective. Each complex X of R-modules admits a *semi-injective resolution*: a quasi-isomorphism $X \to I$, where I is semi-injective. Moreover, one can choose an I such that for each integer n the extension $\text{Ker}(\partial^n) \subseteq I^n$ is essential; here ∂ is the differential on I. Such a *minimal* semi-injective resolution of X is unique, up to isomorphism of complexes. For details see [1] and [6, Appendix B].

In the result below the additional hypotheses on I hold if R is regular, for then any complex of injectives is semi-injective, by [5, 2.4,2.8]. They hold also when I is a minimal and $H_n(X) = 0$ for $n \ll 0$, for then $I^i = 0$ for $i \ll 0$ so I and its localizations are semi-injective. Thus, it extends Foxby’s result mentioned earlier.

Proposition 1. Let R be a commutative noetherian ring and X a complex of R-modules. If a complex I of injective modules is quasi-isomorphic to X, then $\text{supp}_R X \subseteq \bigcup_{n \in \mathbb{Z}} \text{ass}_R I^n$.

Equality holds if I_p is minimal and homotopically injective for each $p \in \text{Spec } R$.

Remark 2. It is claimed in [7, 5.1] that the inclusion above is an equality whenever I is a minimal semi-injective resolution of X. This is however not the case; see Proposition 5 for counter-examples. The proof of [7, 5.1] breaks down in the penultimate line, where it is asserted that a certain complex is homotopically injective; what can be salvaged from it is Proposition 1. The latter result is also implicit in [4], so we provide only a sketch. In the same vein, the last line of [2, 9.2] is incorrect: only conditions (2)–(4) in op. cit. are equivalent, and are implied by condition (1).

Given an ideal a in R, we write $\Gamma_a(-)$ for the a-torsion functor on the category of R-modules, and $R\Gamma_a(-)$ for its right derived functor; see [3] or [8].

Sketch of proof. By localization, it suffices to prove the following statement: Suppose that the ring R is local, with maximal ideal m and residue field k. If m is in $\text{supp}_R X$, then the complex $\Gamma_m(I)$ is non-zero; the converse holds if I is minimal semi-injective. It follows from [4, 2.1.4.1] that the conditions below are equivalent:

(i) $H(X \otimes_R k) \neq 0$;
(ii) $H(R\text{Hom}_R(k, X)) \neq 0$;
(iii) $H(R\Gamma_m(X)) \neq 0$.

Since the complex I consists of injective modules and is quasi-isomorphic to X, the complexes $R\Gamma_m(X)$ and $\Gamma_m(I)$ are quasi-isomorphic; see [8, 3.5.1]. Therefore, if m is in $\text{supp}_R X$, the complex $\Gamma_m(I)$ must be non-zero.

Suppose $m \notin \text{supp}_R X$ holds, so that $H(R\text{Hom}_R(k, X)) = 0$. When I is semi-injective $R\text{Hom}_R(k, X)$ is quasi-isomorphic to $\text{Hom}_R(k, I)$, which is isomorphic to $\text{Hom}_R(k, \Gamma_m(I))$; when I is also minimal the differential on $\text{Hom}_R(k, I)$ is zero, and hence $H(\text{Hom}_R(k, I)) = 0$ implies $\Gamma_m(I) = 0$. □
Next we focus on our main task; namely, giving examples that show that Proposition 1 is probably the best possible. Their construction is motivated by an observation of Neeman [10, 6.5]; see also Iacob and Iyengar [5]. First, we record an elementary remark about associated primes of products.

Remark 3. Let R be a commutative noetherian ring and let $\{M_\lambda\}$ be a family of R-modules. There are inclusions

$$\bigcup_{\lambda} \text{ass}_R M_\lambda \subseteq \text{ass}_R \left(\prod_{\lambda} M_\lambda \right) \subseteq \{p \in \text{Spec } R \mid p \subseteq q \in \text{ass}_R M_\lambda \text{ for some } \lambda \}.$$

Indeed, the inclusion on the left holds since each M_λ is a submodule of the product module. For the one on the right: if a prime p is the annihilator of an element (m_λ), then it is contained in the annihilator of each m_λ; pick one that is non-zero.

Construction 4. Let R be a commutative noetherian ring of the form $Q[x]/(x^2)$. We view Q as a subring of R; it is also a quotient ring: $Q = R/Rx$, so it is noetherian. We assume $\dim R \geq 1$, and fix a non-minimal prime ideal n in R.

Since each prime ideal in R contains x the natural map $\text{Spec } R \to \text{Spec } Q$ is bijective, with the inverse map assigning to a prime q in Q the prime (q, x) in R. In particular, the prime ideal $n \cap Q$ in Q is non-minimal as well.

Let E be the injective hull of $Q/(n \cap Q)$ over Q and set $E = \text{Hom}_Q(R, \bar{E})$, with the induced R-module structure. Note that E is the injective hull of R/n over R. It is convenient to view it as the Q-module $\bar{E} \oplus \bar{E}x^{-1}$ with the obvious action by x and then by R. It is then evident that the complex of R-modules

$$J = 0 \longrightarrow E \xrightarrow{x} E \xrightarrow{x} E \xrightarrow{x} \cdots,$$

situates in degree 0 and higher, is exact with $H^0(J) = \bar{E}$, where \bar{E} is viewed as an R-module via the surjection $R \to Q$. The natural inclusion $\iota: \bar{E} \to J$ is thus an injective resolution of \bar{E} over R.

In what follows, the ith suspension of a complex M is denoted $\Sigma^i M$.

Proposition 5. Let X denote the complex of R-modules $\prod_{i \in \mathbb{Z}} \Sigma^i \bar{E}$, and let I be the complex of R-modules $\prod_{i \in \mathbb{Z}} \Sigma^i J$. The following statements hold.

1. The complex I is semi-injective and minimal.
2. The natural map $\prod_{i \in \mathbb{Z}} \Sigma^i \iota: X \to I$ is a quasi-isomorphism.
3. $\text{supp } X = \{n\} \subseteq \text{ass}_R I^n$, for each integer n.
4. For any prime p in $\text{ass}_R I^n$ with $p \neq n$, the complex of injective R_p-modules I_p is acyclic but not contractible, and hence not homotopically injective.

Proof. Recall that $\iota: \bar{E} \to J$ is a quasi-isomorphism.

1. The complex $\Sigma^i J$ consists of injective R-modules and $(\Sigma^i J)^n = 0$ for $n < -i$, hence $\Sigma^i J$ is semi-injective. Therefore the same holds for I, since a product of semi-injective complexes is semi-injective.

As to the minimality, note that the differential $\partial^n : I^n \to I^{n+1}$ is

$$I^n = \prod_{i \geq n} E \xrightarrow{x} \left(\prod_{i \geq n} E \right) \oplus E = \prod_{i \geq n-1} E = I^{n+1}.$$

Evidently $\ker(\partial^n)$ is the submodule $\prod_{i \geq n} \bar{E}$ of I^n. It is now easy to verify that the extension $\ker(\partial^n) \subset I^n$ is essential. Therefore I is a minimal complex.

2. holds because a product of quasi-isomorphisms is a quasi-isomorphism.
(3) It is easy to see that $\text{supp}_R \overline{E} = \{n\}$; for example, J is the minimal injective resolution of E over R, so $\text{supp}_R \overline{E} = \text{ass}_R E = \{n\}$. Observe that there is an isomorphism of complexes $X \cong \bigoplus_{i \in \mathbb{Z}} \Sigma^i \overline{E}$, so $\text{supp}_R X = \{n\}$.

Since the R-module I^n is isomorphic to $\prod_{i \geq n} E$, Remark 3 yields $\{n\} = \text{ass}_R E \subseteq \text{ass}_R I^n$.

The claim is that this inclusion is strict; equivalently, that there exist elements in $I^n = \prod_{i \geq n} E$ that are not n-torsion.

Indeed, E is the injective hull of R/n, so it is a module over the local ring R_n; see [9, 18.4]. Since n is not a minimal prime ideal in R, by hypothesis, R_n does not have finite length, and hence neither does the R_n-module E; see [9, 18.6]. However, E is Artinian, again by [9, 18.6], so for each integer $i \geq 0$ there must be an element e_i in E such that $n^i \cdot e_i \neq 0$ (cf. the proof of [9, 18.6(iv)]). Evidently, the element $(e_i - n)_{i \geq n}$ in I^n is not n-torsion.

(4) Fix a prime p as in the hypothesis. By Remark 3, one has $p \subset n$ so $\overline{E}_p = 0$, since \overline{E} is n-torsion, and hence $X_p = 0$. As I is quasi-isomorphic to X, the complex I_p is quasi-isomorphic to X_p, and hence an acyclic complex of injective R_p-modules. It is also minimal since localization preserves minimality. Since the complex I_p is non-zero, by the choice of p, it follows form the minimality that it is not contractible. □

Acknowledgments. We thank Luchezar Avramov, Lars Winther Christensen, and Henning Krause for their comments on an earlier version of this paper.

References