STACKABLE GROUPS, TAME FILLING INVARIANTS, AND ALGORITHMIC PROPERTIES OF GROUPS

MARK BRIT TENHAM AND SUSAN HERMILLER

Abstract. We introduce a combinatorial property for finitely generated groups called stackable that implies the existence of an inductive procedure for constructing van Kampen diagrams with respect to a particular finite presentation. We also define algorithmically stackable groups, for which this procedure is an algorithm. This property gives a common model for algorithms arising from both rewriting systems and almost convexity for groups.

We also introduce a new pair of asymptotic invariants that are filling inequalities strengthening the notions of intrinsic and extrinsic diameter inequalities for finitely presented groups. These tame filling inequalities are quasi-isometry invariants. We show that invariants associated to tame combability of groups, a property developed by Mihalik and Tschantz, are equivalent to extrinsic tame filling inequalities, and so tame combing inequalities are a refinement of extrinsic diameter inequalities.

Both intrinsic and extrinsic tame filling inequalities are discussed for many examples of stackable groups, including groups with a finite complete rewriting system, Thompson’s group F, Baumslag-Solitar groups and their iterates, and almost convex groups. We show that the fundamental group of any closed 3-manifold with a uniform geometry is algorithmically stackable using a regular language of normal forms.

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction and definitions</td>
<td>2</td>
</tr>
<tr>
<td>1.1.</td>
<td>Overview</td>
<td>2</td>
</tr>
<tr>
<td>1.2.</td>
<td>Notation</td>
<td>7</td>
</tr>
<tr>
<td>1.3.</td>
<td>Stackable groups: Definitions and motivation</td>
<td>8</td>
</tr>
<tr>
<td>1.4.</td>
<td>Tame filling inequalities: Definitions and motivation</td>
<td>14</td>
</tr>
<tr>
<td>2.</td>
<td>Relationships among filling invariants</td>
<td>16</td>
</tr>
<tr>
<td>3.</td>
<td>Tame filling inequalities and tame combings</td>
<td>17</td>
</tr>
<tr>
<td>4.</td>
<td>Combed fillings for stackable groups</td>
<td>24</td>
</tr>
<tr>
<td>5.</td>
<td>Examples of stackable groups, and their tame filling inequalities</td>
<td>30</td>
</tr>
<tr>
<td>5.1.</td>
<td>Groups admitting complete rewriting systems</td>
<td>30</td>
</tr>
<tr>
<td>5.2.</td>
<td>Thompson’s group F</td>
<td>33</td>
</tr>
<tr>
<td>5.3.</td>
<td>Iterated Baumslag-Solitar groups</td>
<td>34</td>
</tr>
<tr>
<td>5.4.</td>
<td>Solvable Baumslag-Solitar groups</td>
<td>35</td>
</tr>
</tbody>
</table>

2010 Mathematics Subject Classification. 20F65; 20F10, 20F69, 68Q42.
1. Introduction and Definitions

1.1. Overview. In geometric group theory, several properties of finitely generated groups have been defined using a language of normal forms together with geometric or combinatorial conditions on the associated Cayley graph, most notably in the concepts of combable groups and automatic groups in which the normal forms satisfy a fellow traveler property. In this paper we use a set of normal forms together with another combinatorial property on the Cayley graph of a finitely generated group, namely a notion of “flow” toward the identity vertex, to define a property which we call stackable. More specifically, let G be a group with a finite inverse-closed generating set A, and let Γ be the associated Cayley graph, with set $\tilde{E}(\Gamma)$ of directed edges. For each $g \in G$ and $a \in A$, let $e_{g,a}$ denote the directed edge in $\tilde{E}(\Gamma)$ with initial vertex g, terminal vertex ga, and label a. Given a set $N \subset A^*$ of normal forms for G over A, write y_g for the normal form of the element g of G. Note that whenever an equality of words $y_ga = y_ga$ or $y_g = y_ga^{-1}$ holds, there is a van Kampen diagram for the word $y_gay_g^{-1}$ that contains no 2-cells; in this case, we call the edge $e_{g,a}$ degenerate. Let $\tilde{E}_d = \tilde{E}_{d,N}$ be the set of degenerate edges, and let $\tilde{E}_r = \tilde{E}_{r,N} := \tilde{E}(\Gamma) \setminus \tilde{E}_d$.

Definition 1.1. A group G is stackable with respect to a finite inverse-closed generating set A if there exist a set N of normal forms for G over A containing the empty word, a well-founded strict partial ordering $<$ on \tilde{E}_r, and a constant k, such that whenever $g \in G$, $a \in A$, and $e_{g,a} \in \tilde{E}_r$, then there exists a directed path ρ from g to ga in Γ of length at most k satisfying the property that whenever e' is a directed edge in the path ρ, either $e' \in \tilde{E}_r$ and $e' < e_{g,a}$, or else $e' \in \tilde{E}_d$.

We show that every stackable group is finitely presented (in Lemma 1.5) and admits an inductive procedure which, upon input of a word in the generators that represents the identity of the group, constructs a van Kampen diagram for that word over this presentation. We also define a notion of algorithmically stackable, which guarantees that this inductive procedure is an algorithm, and a notion of regularly stackable, in which the algorithmically stackable structure involves a regular language of normal forms. The structure of these van Kampen diagrams for stackable groups differs from the standard diagrams arising in combable groups, and the class of stackable groups includes groups with a wider spectrum of filling functions (discussed below) than the class of combable groups.

Proposition 1.7. If G is algorithmically stackable over the finite generating set A, then G has solvable word problem.

This stackable property provides a uniform model for the procedures for building van Kampen diagrams that arise in both the example of groups with a finite complete rewriting
The stackable property for a group G also enables computing asymptotic filling invariants for G by an inductive method; we give an illustration of this in Section 4.

Many asymptotic invariants associated to any group G with a finite presentation $\mathcal{P} = \langle A \mid R \rangle$ have been defined using properties of van Kampen diagrams over this presentation. Collectively, these are referred to as filling invariants; an exposition of many of these is given by Riley in [2, Chapter II]. One of the most well-studied filling functions is the isodiametric, or intrinsic diameter, function for G. The adjective “intrinsic” refers to the fact that the distances are measured in the van Kampen diagram. It is natural to consider the distance in the Cayley graph, instead, giving an “extrinsic” property, and in [4], Bridson and Riley defined and studied properties of extrinsic diameter functions. It is often easier to compute upper bounds for these functions, rather than compute exact values; a group satisfies a diameter inequality for a function f if f is an upper bound for the diameter function.

In this paper we also introduce refinements of the notions of diameter inequalities, called tame filling inequalities. In order to accomplish this, we consider not only van Kampen diagrams, but also homotopies that “comb” these diagrams; a collection of van Kampen diagrams and homotopies for all of the words representing the identity of the group is a combed filling. In the last part of this Introduction, in Subsection 1.4, we give the details of the definitions of combed fillings and of diameter and tame filling inequalities. In Section 2, we show in Proposition 2.1 that an intrinsic or extrinsic tame filling inequality with respect to a function f implies an intrinsic or extrinsic (respectively) diameter inequality for the function $n \mapsto \lceil f(n) \rceil$.

Our first motivation for the definition of tame filling inequalities is to illuminate the close relationship of the concept of tame combing defined by Mihalik and Tschantz [18], as well as associated radial tame combing functions advanced by Hermiller and Meier [12] (see Definition 3.3 for their definition), with more well-studied diameter (filling) functions. Tame combings are homotopies in the Cayley complex, in contrast to homotopies in van Kampen diagrams for the case of combed fillings. In Section 3, we show an equivalence between tame combing invariants and extrinsic filling invariants.

Corollary 3.4. Let G be a group with a finite symmetrized presentation \mathcal{P}. Up to Lipschitz equivalence of nondecreasing functions, the pair (G, \mathcal{P}) satisfies an extrinsic tame filling inequality for a function f if and only if (G, \mathcal{P}) satisfies a radial tame combing inequality with respect to f.

That is, Corollary 3.4 and Proposition 2.1 together show that a radial tame combing inequality is a strengthening of an extrinsic diameter inequality. Every group admitting a radial tame combing inequality for a finite-valued function, and hence, by Corollary 3.4, every group admitting a finite-valued extrinsic tame filling inequality function, must also be tame combable as defined in [18]. Although every group admits extrinsic diameter inequalities for finite-valued functions, it is not yet clear whether every finitely presented group admits tame filling inequalities for such functions. A long-standing conjecture of Tschantz [22] states that there is a finitely presented group that does not admit a tame combing, and as a result, that there exists a finitely presented group which admits an extrinsic diameter inequality for a finite-valued function f, but which does not satisfy an extrinsic tame filling
inequality for any finite-valued function, and in particular does not satisfy an extrinsic tame filling inequality for any function Lipschitz equivalent to f.

While a radial tame combing inequality is an extrinsic property, Corollary 3.4 also shows that the intrinsic tame filling inequality can be interpreted as the intrinsic analog of the radial tame combing inequality. The fundamental differences between intrinsic and extrinsic properties arising in this section all stem from the fact that gluing van Kampen diagrams along their boundaries preserves extrinsic distances, but not necessarily intrinsic distances.

In Section 4, we show that stackable groups admit a stronger inductive procedure, which produces a combed van Kampen diagram for any input word. The inductive nature of this combed filling associated to a stackable group yields the following.

Theorem 4.2'. If G is a stackable group, then G admits intrinsic and extrinsic tame filling inequalities for finite-valued functions.

Theorem 4.3. If G is an algorithmically stackable group, then G satisfies both intrinsic and extrinsic tame filling inequalities with respect to a recursive function.

This leads us to another motivation for studying tame filling inequalities, namely to give information leading toward answering the open question of whether there exists a finitely presented group which does not admit the stackable property. An immediate consequence of Theorem 4.2 and Corollary 3.4 is that every stackable group satisfies the quasi-isometry invariant property of having a tame combing, developed by Mihalik and Tschantz [18]. If Tschantz’s conjecture [22] that a non-tame-combable finitely presented group G exists is true, such a group G would also not admit the stackable property with respect to any finite generating set.

In Section 5 we discuss several examples of (classes of) stackable groups, and compute bounds on their tame filling invariants. To begin, in Section 5.1 we consider groups that can be presented by rewriting systems. A finite complete rewriting system for a group G consists of a finite set A and a finite set of rules $R \subseteq A^* \times A^*$ such that, as a monoid, G is presented by $G = \text{Mon}(A \mid u = v \text{ whenever } (u, v) \in R)$, and the rewritings $xuy \to xvy$ for all $x, y \in A^*$ and (u, v) in R satisfy: (1) each $g \in G$ is represented by exactly one word over A that cannot be rewritten, and (2) the (strict) partial ordering $x > y$ if $x \to x_1 \to \ldots \to x_n \to y$ is well-founded. The length of a rewriting rule $u \to v$ in R is the sum of the lengths of the words u and v. The string growth complexity function $\gamma : \mathbb{N} \to \mathbb{N}$ associated to this system is defined by $\gamma(n) = \text{the maximal length of a word that is a rewriting of a word of length } \leq n$. We use the algorithm of Section 4 to obtain tame filling inequalities in terms of γ in this case.

Theorem 5.1 and **Corollary 5.3.** Let G be a group with a finite complete rewriting system. Let γ be the string growth complexity function for the associated minimal system and let ζ denote the length of the longest rewriting rule for this system. Then G is regularly stackable and satisfies both intrinsic and extrinsic tame filling inequalities for the recursive function $n \mapsto \gamma(\lceil n \rceil + \zeta + 2) + 1$.

This result has potential to reduce the amount of work in searching for finite complete rewriting systems for groups. A choice of partial ordering used in (2) above implies an upper bound on the string growth complexity function. Then given a lower bound on the intrinsic
or extrinsic tame filling inequalities or diameter inequalities, this corollary can be used to eliminate partial orderings before attempting to use them (e.g., via the Knuth-Bendix algorithm) to construct a rewriting system.

In Section 5.2, we consider Thompson’s group F; i.e., the group of orientation-preserving piecewise linear automorphisms of the unit interval for which all linear slopes are powers of 2, and all breakpoints lie in the the 2-adic numbers. Thompson’s group F has been the focus of considerable research in recent years, and yet the questions of whether F is automatic or has a finite complete rewriting system are open (see the problem list at [21]). In [6], Cleary, Hermiller, Stein, and Taback show that Thompson’s group F is stackable (and their proof can be shown to give an algorithmic stacking), and we note in Section 5.2 that the set of normal forms associated to this stacking is a deterministic context-free language. In Section 5.2 we show that this group also admits a linear intrinsic tame filling inequality, thus strengthening the result of Guba [11, Corollary 1] that F has a linear intrinsic diameter function.

In the next two subsections of Section 5, we discuss two specific examples of classes of groups admitting finite complete rewriting systems in more detail. We show in Section 5.4 that the Baumslag-Solitar group $BS(1,p)$ with $p \geq 3$ admits an intrinsic tame filling inequality Lipschitz equivalent to the exponential function $n \rightarrow p^n$, using the linear extrinsic tame filling inequality for these groups shown in [6]. We note in Section 5.3 that the iterated Baumslag-Solitar groups G_k are examples of regularly stackable groups admitting recursive intrinsic and extrinsic tame filling inequalities. However, applying the lower bound of Guba [11] on their intrinsic diameter functions, for each natural number $k > 2$ the group G_k does not admit intrinsic or extrinsic tame filling inequalities with respect to a $(k - 2)$-fold tower of exponentials.

A natural property to add when building a way for edges to “flow” toward the origin for a stackable group is to require that the partial ordering $<$ on the set \vec{E}_r, N of nondegenerate edges be compatible with the ordering given by the path metric, and to require that the normal forms label geodesics in Γ, giving the notion of a geodesically stackable group. In Section 5.5 we show that this property is equivalent to Cannon’s almost convexity property [5] (see Definition 5.5). The fact that almost convexity implies geodesic stackability follows readily from a comparison of their definitions; the converse yields the somewhat unexpected result that any geodesically stackable structure can be replaced by another that is both algorithmic and based upon the shortlex normal forms. Building upon the characterization of almost convexity by a radial tame combing inequality in [12], we also show in the following that almost convexity is equivalent to conditions on tame filling inequalities.

Theorem 5.6. Let G be a group with finite generating set A, and let $\iota : \mathbb{N}[\frac{1}{n}] \rightarrow \mathbb{N}[\frac{1}{n}]$ denote the identity function. The following are equivalent:

1. The pair (G, A) is almost convex.
2. The pair (G, A) is geodesically stackable.
3. The pair (G, A) is geodesically algorithmically stackable.
4. The pair (G, A) is geodesically stackable with respect to shortlex normal forms.
(5) There is a finite presentation \(P = \langle A \mid R \rangle \) for \(G \) that satisfies an intrinsic tame filling inequality with respect to \(\iota \).

(6) There is a finite presentation \(P = \langle A \mid R \rangle \) for \(G \) that satisfies an extrinsic tame filling inequality with respect to \(\iota \).

The properties in Theorem 5.6 are satisfied by all word hyperbolic groups and cocompact discrete groups of isometries of Euclidean space, with respect to every generating set [5]. They are also satisfied by any group \(G \) that is shortlex automatic with respect to the generating set \(A \) (again this includes all word hyperbolic groups [8, Thms 3.4.5,2.5.1]); for these groups, the set of shortlex normal forms is a regular language. Hence Theorem 5.6 shows every shortlex automatic group, including every word hyperbolic group, is regularly stackable.

One of the motivations for the definition of automatic groups was to gain a better understanding of the fundamental groups of 3-manifolds, in particular to find practical methods for computing in these groups. However, the fundamental group of a 3-manifold is automatic if and only if its JSJ decomposition does not contain manifolds with a uniform Nil or Sol geometry [8, Theorem 12.4.7]. In contrast, [14] Hermiller and Shapiro have shown that the fundamental group of every closed 3-manifold with a uniform geometry other than hyperbolic must have a finite complete rewriting system, and so combining this result with Theorems 5.1 and 5.6 yields the following.

Corollary 5.8. If \(G \) is the fundamental group of a closed 3-manifold with a uniform geometry, then \(G \) is regularly stackable.

In [16], Kharlampovich, Khoussainov, and Miasnikov introduced the concept of Cayley graph automatic groups, which use a fellow-traveling regular set of “normal forms” in which the alphabet for the normal form words is not necessarily a generating set, resulting in a class of groups which includes all automatic groups but also includes many nilpotent and solvable nonautomatic groups. An interesting open question to ask, then, is what relationships, if any, exist between the classes of stackable groups and Cayley graph automatic groups.

In Section 6, we consider tame filling invariants for a class of combable groups.

Corollary 6.3. If a finitely generated group \(G \) admits a quasi-geodesic language of normal forms that label simple paths in the Cayley graph and that satisfy a \(K \)-fellow traveler property, then \(G \) satisfies linear intrinsic and extrinsic tame filling inequalities.

In particular, all automatic groups over a prefix-closed language of normal forms satisfy the hypotheses of Corollary 6.3. This result strengthens that of Gersten [9], that combable groups have a linear intrinsic diameter function.

Finally, in Section 7, we prove that tame filling inequalities are quasi-isometry invariants, in the following.

Theorem 7.1. Suppose that \((G,P) \) and \((H,P') \) are quasi-isometric groups with finite presentations. If \((G,P) \) satisfies an extrinsic tame filling inequality with respect to \(f \), then \((H,P') \) satisfies an extrinsic tame filling inequality with respect to a function that is Lipschitz equivalent to \(f \). If \((G,P) \) satisfies an intrinsic tame filling inequality with respect to \(f \), then after adding all relators of length up to a sufficiently large constant to the presentation \(P' \),
the pair \((H, P')\) satisfies an intrinsic tame filling inequality with respect to a function that is Lipschitz equivalent to \(f\).

1.2. Notation.

Throughout this paper, let \(G\) be a group with a finite symmetric generating set; that is, such that the generating set \(A\) is closed under inversion. We will also assume that for each \(a \in A\), the element of \(G\) represented by \(a\) is not the identity \(\epsilon\) of \(G\). For a word \(w \in A^*\), we write \(w^{-1}\) for the formal inverse of \(w\) in \(A^*\). For words \(v, w \in A^*\), we write \(v = w\) if \(v\) and \(w\) are the same word in \(A^*\), and write \(v =_G w\) if \(v\) and \(w\) represent the same element of \(G\).

The group \(G\) also has a presentation \(P = \langle A \mid R \rangle\) that is symmetrized; that is, such that the generating set \(A\) is symmetric, and the set \(R\) of defining relations is closed under inversion and cyclic conjugation. Let \(X\) be the Cayley 2-complex corresponding to this presentation, whose 1-skeleton \(X^1 = \Gamma\) is the Cayley graph of \(G\) with respect to \(A\). Let \(E(X) = E(\Gamma)\) be the set of 1-cells (i.e., undirected edges) in \(X^1\). By usual convention, for all \(g \in G\) and \(a \in A\), we consider both the directed edge \(e_{g,a}\) labeled \(a\) from the vertex \(g\) to \(ga\) and the directed edge \(e_{ga,a^{-1}}\) labeled \(a^{-1}\) from \(ga\) to \(g\) to have the same underlying undirected CW complex edge between the vertices labeled \(g\) and \(ga\). Let \(\overline{E}(X) = \overline{E}(\Gamma)\) be the set of these directed edges of \(X^1\).

For an arbitrary word \(w\) in \(A^*\) that represents the trivial element \(\epsilon\) of \(G\), there is a van Kampen diagram \(\Delta\) for \(w\) with respect to \(P\). That is, \(\Delta\) is a finite, planar, contractible combinatorial 2-complex with edges directed and labeled by elements of \(A\), satisfying the properties that the boundary of \(\Delta\) is an edge path labeled by the word \(w\) starting at a basepoint vertex \(*\) and reading counterclockwise, and every 2-cell in \(\Delta\) has boundary labeled by an element of \(R\).

Note that although the definition in the previous paragraph is standard, it involves a slight abuse of notation, in that the 2-cells of a van Kampen diagram are polygons whose boundaries are labeled by words in \(A^*\), rather than elements of a (free) group. We will also consider the set \(R\) of defining relators as a finite subset of \(A^* \setminus \{1\}\), where 1 is the empty word. We do not assume that every defining relator is freely reduced, but the freely reduced representative of every defining relator, except 1, must also be in \(R\).

In general, there may be many different van Kampen diagrams for the word \(w\). Also, we do not assume that van Kampen diagrams in this paper are reduced; that is, we allow adjacent 2-cells in \(\Delta\) to be labeled by the same relator with opposite orientations.

For any van Kampen diagram \(\Delta\) with basepoint \(*\), let \(\pi_\Delta : \Delta \to X\) denote the cellular map such that \(\pi_\Delta(*) = \epsilon\) and \(\pi_\Delta\) maps edges to edges preserving both label and direction.

A collection \(\{\Delta_w \mid w \in A^*, w =_G \epsilon\}\) of van Kampen diagrams for all words representing the trivial element, where each diagram \(\Delta_w\) has boundary label \(w\), is called a filling for the group \(G\) over the presentation \(P\).

1.3. Stackable groups: Definitions and motivation.

The main goal of this section is to describe the inductive procedure for constructing van Kampen diagrams for stackable groups. Throughout this section we assume that G is a group with a finite symmetric generating set A. Whenever $x \in A^*$ and $a \in A$, we let $e_{x,a}$ denote the directed edge $e_{g,a}$ in the Cayley graph Γ labeled a whose initial vertex is the element g of G represented by x. Throughout this section we also assume that $\mathcal{N} = \{ y_g \mid g \in G \}$ is a set of normal forms for G (where $y_g \in A^*$ represents the element $g \in G$), \mathcal{E}_d is the corresponding set of degenerate edges in Γ, and $\mathcal{E}_r = \mathcal{E}(\Gamma) \setminus \mathcal{E}_d$ is the complementary set. We refer to elements of \mathcal{E}_r as recursive edges.

If G is stackable over A, one can define a function $c : \mathcal{E}_r \rightarrow A^*$ by choosing, for each $e_{g,a} \in \mathcal{E}_r$, a label $c(e_{g,a}) = a_1 \cdots a_n \in A^*$ of a directed path in Γ satisfying the property that $c(e_{g,a}) =_G a$, $n \leq k$, and either $e_{ga_1 \cdots a_{i-1},a_i} < e_{g,a}$ or $e_{ga_1 \cdots a_{i-1},a_i} \in \mathcal{E}_d$ for each i. (See Figure 1.) The image $c(\mathcal{E}_r) \subseteq \bigcup_{n=0}^k A^n$ is a finite set. This function will be called a stacking map.

On the other hand, given any set \mathcal{N} of normal forms for G over A and any function $c : \mathcal{E}_r \rightarrow A^*$, we can define a relation $<_c$ on \mathcal{E}_r as follows. Whenever e', e are both in \mathcal{E}_r and e' lies in the path in Γ that starts at the initial vertex of e and is labeled by $c(e)$ (where e' is oriented in the same direction as this path), write $e' <_c e$. Let $<_c$ be the transitive closure of this relation.

If c is a stacking map obtained from a stackable structure $(\mathcal{N}, <, k)$ (from Definition 1.1) for G over A, then the relation $<_c$ is a subset of the well-founded strict partial ordering $<$, and so $<_c$ is also a well-founded strict partial ordering. Moreover, the constant bound k on the lengths of words $c(e)$ together with König’s Infinity Lemma imply that $<_c$ satisfies the property that for each $e \in \mathcal{E}_r$, there are only finitely many $e'' \in \mathcal{E}_r$ with $e'' <_c e$.

Definition 1.2. A stacking for a group G with respect to a finite symmetric generating set A is a pair (\mathcal{N}, c) where \mathcal{N} is a set of normal forms for G over A containing the empty word and $c : \mathcal{E}_r \rightarrow A^*$ is a function satisfying

- **(S1):** For each $e_{g,a} \in \mathcal{E}_r$ we have $c(e_{g,a}) =_G a$.
- **(S2):** The relation $<_c$ on \mathcal{E}_r is a strict partial ordering satisfying the property that for each $e \in \mathcal{E}_r$, there are only finitely many $e'' \in \mathcal{E}_r$ with $e'' <_c e$.
- **(S3):** The image $c(\mathcal{E}_r) = \{ c(e) \mid e \in \mathcal{E}_r \} \subset A^*$ is a finite set.
(Note that Property (S2) implies that although for each \(e_{g,a} \in \tilde{E}_r \) we have \(c(e_{g,a}) =_G a \), the word \(c(e_{g,a}) \) cannot be the letter \(a \).)

From the discussion above, the following is immediate.

Lemma 1.3. A group \(G \) is stackable with respect to a finite symmetric generating set \(A \) if and only if \(G \) admits a stacking with respect to \(A \).

We call a group \(G \) stackable if there is a finite generating set for \(G \) with respect to which the group is stackable. For a stacking \((N, c)\) of \(G \) over \(A \), let \(R_c \) be the closure of the set \(\{ c(e_{g,a})a^{-1} \mid e_{g,a} \in \tilde{E}_r \} \) under inversion, cyclic conjugation, and free reduction.

Notation 1.4. For a stacking \((N, c)\), the function \(c \) is the stacking map, the set \(c(\tilde{E}_r) \) is the stacking image, the set \(R_c \) is the stacking relation set, and \(<_c \) is the stacking ordering.

In essence, the two equivalent definitions of stackability in Lemma 1.3 are written to display connections to two other properties. Definition 1.1 closely resembles Definition 5.5 of almost convexity, and the stacking map in Definition 1.2 gives rise to rewriting operations, which we discuss next.

Starting from a stacking \((N, c)\) for a group \(G \) with generators \(A \), we describe a stacking reduction procedure for finding the normal form for the group element associated to any word, by defining a rewriting operation on words over \(A \), as follows. Whenever a word \(w \in A^* \) has a decomposition \(w = xay \) such that \(x, y \in A^* \), \(a \in A \), and the directed edge \(e_{x,a} \) of \(\Gamma \) lies in \(\tilde{E}_r \), then we rewrite \(w \to xc(e_{x,a})y \). The definition of the stacking ordering \(<_c \) says that for every directed edge \(e' \) in the Cayley graph \(\Gamma \) that lies along the path labeled \(c(e_{x,a}) \) from the vertex labeled \(x \), either \(e' \) is a degenerate edge in \(\tilde{E}_d \), or else \(e' <_c e \). Then Property (S2) shows that starting from the word \(w \), there can be at most finitely many rewritings \(w \to w_1 \to \cdots \to w_m = z \) until a word \(z \) is obtained which cannot be rewritten with this procedure. The final step of the stacking reduction procedure is to freely reduce the word \(z \), resulting in a word \(w' \).

Now \(w =_G w' \), and the word \(w' \) (when input into this procedure) is not rewritten with the stacking reduction procedure. Write \(w' = a_1 \cdots a_n \) with each \(a_i \in A \). Then for all \(1 \leq i \leq n \), the edge \(e_i := e_{a_{i-1}a_i} \) of \(\Gamma \) does not lie in \(\tilde{E}_r \), and so must be in \(\tilde{E}_d \). In the case that \(i = 1 \), this implies that one of the equalities of words \(y_\epsilon a_1 = y_a \) or \(y_a a_1^{-1} = y_\epsilon \) must hold. Since the normal form of the identity is the empty word, i.e. \(y_\epsilon = 1 \), we must have \(y_a = a_1 \). Assume inductively that \(y_{a_1 \cdots a_{i-1}} = a_1 \cdots a_i \). The inclusion \(e_{i+1} \in \tilde{E}_d \) implies that either \(a_1 \cdots a_i a_{i+1} = y_{a_1 \cdots a_{i+1}} \) or \(y_{a_1 \cdots a_{i+1}} a_{i+1}^{-1} = a_1 \cdots a_i \). However, the latter equality on words would imply that the final letter \(a_{i+1}^{-1} = a_i \), which contradicts the fact that \(w' \) is freely reduced. Hence we have that \(w' = y_{w'} = y_w \) is in normal form, and moreover every prefix of \(w' \) is also in normal form.

That is, we have shown the following.

Lemma 1.5. Let \(G \) be a group with generating set \(A \) and let \((N, c)\) be a stacking for \((G, A)\). If \(R_c \) is the associated stacking relation set, then \(\langle A \mid R_c \rangle \) is a finite presentation for \(G \). Moreover, the set \(\mathcal{N}' \) of normal forms of a stacking is closed under taking prefixes.
We call $(A \mid R_c)$ the *stacking presentation*. In the Cayley 2-complex X corresponding to this presentation, for each edge e labeled a in the set \vec{E}_r, the word $c(e)a^{-1}$ is the label of the boundary path for a 2-cell in X, that traverses the reverse of the edge e.

Any prefix-closed set N of normal forms for G over A yields a maximal tree T in the Cayley graph Γ, namely the set of edges in the paths in Γ starting at e and labeled by the words in N. The associated set \vec{E}_d of degenerate edges is exactly the set $\vec{E}(T)$ of directed edges lying in this tree, and the edges of \vec{E}_r are the edges of Γ that do not lie in the tree T. Each element w of N must be a simple word, meaning that w labels a simple path, that does not repeat any vertices or edges in the Cayley graph.

We note that our stacking reduction procedure for finding normal forms for words may not be an algorithm. To make this process algorithmic, we would need to be able to recognize, given $x, a \in A^*$ and $c \in C$, whether or not $e_{x,a} \in \vec{E}_r$, and if so, be able to find $c(e_{x,a})$. If we extend the map c to a function $c' : \vec{E}(\Gamma) \to A^*$ on all directed edges in Γ, by defining $c'(e) := c(e)$ for all $e \in \vec{E}_r$ and $c'(e) := a$ whenever $e \in \vec{E}_d$ and e has label a, then essentially this means that the graph of the function c', as described by the subset

$$S_c := \{(w, a, c'(e_{w,a})) \mid w \in A^*, a \in A\}$$

of $A^* \times A \times A^*$, should be computable (i.e., decidable or recursive). In that case, given any $(w, a) \in A^* \times A$, by enumerating the words z in A^* and checking in turn whether $(w, a, z) \in S_c$, we can find $c'(w, a)$. (Note that the set S_c is computable and if only if the set $\{(w, a, c(e_{w,a})) \mid w \in A^*, a \in A, e_{w,a} \in \vec{E}_r\}$ describing the graph of c is computable. However, using the latter set in the stacking reduction algorithm has the drawback of requiring us to enumerate the finite (and hence enumerable) set $c(\vec{E}_r)$, but we may not have an algorithm to find this set from the stacking.)

Definition 1.6. A group G is algorithmically stackable if G has a finite symmetric generating set A with a stacking (N, c) such that the set S_c is recursive.

We have shown the following.

Proposition 1.7. If G is algorithmically stackable, then G has solvable word problem.

As with many other algorithmic classes of groups, it is natural to discuss formal language theoretic restrictions on the associated languages, and in particular on the set of normal forms. Computability of the set S_c implies that the set N is computable as well (since any word $a_1 \cdots a_n \in A^*$ lies in N if and only if the word is freely reduced and for each $1 \leq i \leq n$ the tuple $(a_1 \cdots a_{i-1}, a_i, a_i)$ lies in S_c). Many of the examples we consider in Section 5 will satisfy stronger restrictions on the set N.

Definition 1.8. A group G is regularly stackable if G has a finite symmetric generating set A with a stacking (N, c) such that the set N is a regular language and the set S_c is recursive.

The stacking map and stacking ordering can be viewed as giving directions for a “flow” of edges toward the basepoint in the Cayley complex X for the stacking presentation. (For example, an illustration of this flow for the Baumslag-Solitar group $BS(1, 2)$ is given in
Figure 10 in Section 5.4.) That is, from any degenerate edge one can follow the maximal tree T associated to N to the next edge e' along the unique simple path toward the vertex of Γ labeled by the identity of the group G. From any recursive edge e, one can follow a 2-cell to a path containing an edge e' that is either degenerate, else is recursive and satisfies $e' <_c e$. In both cases, we view e' as “closer” than e to the basepoint.

A natural special case to consider occurs when this notion of “closer” coincides with the path metric d_X on the Cayley graph $X^1 = \Gamma$. That is, define the function $\phi : \vec{E}(X) \to \mathbb{N}$ by setting $\phi(e) := \frac{1}{2}(d_X(\epsilon, a) + d_X(\epsilon, b))$ for each edge $e \in \vec{E}(X)$ with endpoints a and b, so that ϕ measures the average distance from a point of e to the origin. Also, as usual we call a word $w \in A^*$ geodesic if w labels a geodesic path in Γ.

Definition 1.9. A group G is geodesically stackable if G has a finite symmetric generating set A with a stacking (N, c) such that all of the elements of N are geodesic words, and whenever $e', e \in \vec{E},$ with $e' <_c e$, then $\phi(e') < \phi(e)$.

Before discussing the details of the inductive procedure for building fillings from stackings, we first reduce the set of diagrams required.

For a group G with symmetrized presentation $\mathcal{P} = \langle A \mid R \rangle$ and a set $\mathcal{N} = \{y_g \mid g \in G\} \subseteq A^*$ of normal forms for G, a normal form diagram is a van Kampen diagram for a word of the form $y_g a y_{g^{-1}}$ where $g \in G$ and a in A. We can associate this normal form diagram with the directed edge of the Cayley complex X labeled by a with initial vertex labeled by g. A normal filling for the pair (G, \mathcal{P}) consists of a set \mathcal{N} normal forms for G that are simple words (i.e. labeling simple paths in the Cayley complex for \mathcal{P}) including the empty word, together with a collection $\{\Delta_e \mid e \in E(X)\}$ of normal form diagrams, where for each undirected edge e in X, the normal form diagram Δ_e is associated to one of the two possible directions of e.

Every normal filling induces a filling, using the “seashell” (“cockleshell” in [2, Section 1.3]) method, illustrated in Figure 2, as follows. Given a word $w = a_1 \cdots a_n$ representing the identity of G, with each $a_i \in A$, then for each $1 \leq i \leq n$, there is a normal form diagram Δ_i in the normal filling that is associated to the edge of X with endpoints labeled by the group elements represented by the words $a_1 \cdots a_{i-1}$ and $a_1 \cdots a_i$. Letting y_i denote the normal form in \mathcal{N} representing $a_1 \cdots a_i$, then the counterclockwise boundary of this
diagram is labeled by either $y_{i-1}a_iy_i^{-1}$ or $y_iy_i^{-1}y_{i-1}^{-1}$; by replacing Δ_i by its mirror image if necessary, we may take Δ_i to have counterclockwise boundary word $x_i := y_{i-1}a_iy_i^{-1}$. We next iteratively build a van Kampen diagram Δ_i' for the word $y_ia_1\cdots a_iy_i^{-1}$, beginning with $\Delta'_1 := \Delta_1$. For $1 < i \leq n$, the planar diagrams Δ_i' and Δ_i have boundary subpaths sharing a common label y_i. The fact that this word is simple, and so labels a simple path in X, implies that any path in a van Kampen diagram labeled by y_i must also be simple, and hence each of these boundary paths is an embedding. These paths are also oriented in the same direction, and so the diagrams Δ_{i-1}' and Δ_i can be glued, starting at their basepoints and folding along these subpaths, to construct the planar diagram Δ_i'. Performing these gluings consecutively for each i results in a van Kampen diagram Δ_n' with boundary label y_enwyw^{-1}. Note that we have allowed the possibility that some of the boundary edges of Δ_n' may not lie on the boundary of a 2-cell in Δ'_n; some of the words x_i may freely reduce to the empty word, and the corresponding van Kampen diagrams Δ_i may have no 2-cells. Note also that the only simple word representing the identity of G is the empty word; that is, $y_e = y_w = 1$. Hence Δ_n' is the required van Kampen diagram for w.

Again starting from a stacking (N, c) for a group G over a finite generating set A, we now give an inductive procedure for constructing a filling for G over the stacking presentation $P = \langle A \mid R_c \rangle$ as follows. Let X be the Cayley graph of this presentation. From the argument above, an inductive process for constructing a normal filling from the stacking will suffice. The set of normal forms for the normal filling will be the set N from the stacking.

We will define a normal form diagram corresponding to each directed edge in $\tilde{E}(X) = \tilde{E}_r \cup \tilde{E}_d$. Let e be an edge in $\tilde{E}(X)$, oriented from a vertex g to a vertex h and labeled by $a \in A$, and let $w_e := yg ay_h^{-1}$.

In the case that e lies in \tilde{E}_d, the word w_e freely reduces to the empty word. Let Δ_e be the van Kampen diagram for w_e, consisting of a line segment of edges, with no 2-cells. (See Figure 3.)

In the case that $e \in \tilde{E}_r$, we will use Noetherian induction to construct the normal form diagram. Write $c(e) = a_1 \cdots a_n$ with each $a_i \in A^*$, and for each $1 \leq i \leq n$, let e_i be the edge in X from $ga_1 \cdots a_{i-1}^{-1}$ to $ga_1 \cdots a_i$ labeled by a_i in the Cayley graph. For each i, either the directed edge e_i is in \tilde{E}_d, or else $e_i \in \tilde{E}_r$ and $e_i <_e e$; in both cases we have, by above or by Noetherian induction, a van Kampen diagram $\Delta_i := \Delta_{e_i}$ with boundary label $yga_1 a_{i-1}^{-1} a_i yga_1 a_i$. By using the “seashell” method, we successively glue the diagrams Δ_{i-1}, Δ_i along their common boundary words $yga_1 a_{i-1}$. Since all of these gluings are along simple paths, this results in a planar van Kampen diagram Δ_e with boundary word $yg c(e)y_h^{-1}$. (Note that by our assumption that no generator represents the identity, $c(e)$

Figure 3. Van Kampen diagram Δ_e for e in \tilde{E}_d
must contain at least one letter.) Finally, glue a polygonal 2-cell with boundary label given by the relator $c(e)a^{-1}$ along the boundary subpath $c(e)$ in Δ'_e, in order to obtain the diagram Δ_e with boundary word w_e. Since in this step we have glued a disk onto Δ'_e along an arc, the diagram Δ_e is again planar, and is a normal form diagram corresponding to e. (See Figure 4.)

The final step to obtain the normal filling associated to the stacking is to eliminate repetitions. Given any undirected edge e in $E(X)$ choose Δ_e to be a normal form diagram constructed above for one of the orientations of e. Then the collection \mathcal{N} of normal forms, together with the collection $\{\Delta_e \mid e \in E(X)\}$ of normal form diagrams, is a normal filling for the stackable group G.

Definition 1.10. A recursive normal filling is a normal filling that can be constructed from a stacking by the above procedure. A recursive filling is a filling induced by a recursive normal filling using seashells.

Remark 1.11. This recursive normal filling and recursive filling both satisfy a further property which we will exploit in our applications: For every van Kampen diagram Δ in the filling and every vertex v in Δ, there is an edge path in Δ from the basepoint $*$ to v labeled by the normal form in \mathcal{N} for the element $\pi_\Delta(v)$ in G.

As with our previous procedure, we have an algorithm in the case that the set S_c is computable.

Proposition 1.12. If G is algorithmically stackable over the finite generating set A, then the procedure above is an inductive algorithm which, upon input of a word $w \in A^*$ that represents the identity in G, will construct a van Kampen diagram for w over the stacking presentation.

Although our stacking reduction procedure above for finding normal forms from a stacking can be used to describe the van Kampen diagrams in this recursive filling more directly, it is this inductive view which will allow us to obtain bounds on filling inequalities for stackable groups in Section 4.

Remark 1.13. For finitely generated groups that are not finitely presented, the concept of a stacking can still be defined, although in this case it makes sense to discuss stackings in...
terms of a presentation for G, to avoid the (somewhat degenerate) case in which every relator is included in the presentation. A group G with symmetrized presentation $\mathcal{P} = \langle A \mid R \rangle$ is \textit{weakly stackable} if there is a set \mathcal{N} of normal forms over A containing 1 and a function $c : \mathbb{E}_r \to A^*$ satisfying properties (S1) and (S2) of Definition 1.2 together with the condition that the stacking relation set R_c is a subset of R. Although we do not consider weakly stackable groups further in this paper, we note here that the stacking reduction procedure and the inductive method for constructing van Kampen diagrams over the presentation $\langle A \mid R_c \rangle$ of G (and hence over \mathcal{P}) described above still hold in this more general setting.

1.4. Tame filling inequalities: Definitions and motivation.

Throughout this section, we assume that G is a finitely presented group, with finite symmetrized presentation $\mathcal{P} = \langle A \mid R \rangle$. We begin with a description of the diameter filling inequalities which motivate the tame filling invariants introduced in this paper.

Let X be the Cayley complex for the presentation \mathcal{P}, let X^1 be the 1-skeleton of X (i.e., the Cayley graph) and let d_X be the path metric on X^1. Given any word $w \in A^*$, let $l(w)$ denote the length of this word in the free monoid. By slight abuse of notation, $d_X(\epsilon, w)$ then denotes the length of the element of G represented by the word w, where as usual ϵ denotes the identity element of the group G. For any van Kampen diagram Δ with basepoint \ast, let d_Δ denote the path metric on the 1-skeleton Δ^1. Recall that the function $\pi_\Delta : \Delta \to X$ maps edges to edges preserving both label and direction, and satisfies $\pi_\Delta(\ast) = \epsilon$.

\textbf{Definition 1.14.} A group G with finite presentation \mathcal{P} satisfies an intrinsic [respectively, extrinsic] diameter inequality for a nondecreasing function $f : \mathbb{N} \to \mathbb{N}$ if for all $w \in A^*$ with $w =_G \epsilon$, there exists a van Kampen diagram Δ for w over \mathcal{P} such that for all vertices v in Δ^0 we have $d_\Delta(\ast, v) \leq f(l(w))$ [respectively, $d_X(\epsilon, \pi_\Delta(v)) \leq f(l(w))$].

There are minimal such nondecreasing functions for any pair (G, \mathcal{P}), namely the intrinsic diameter function or isodiametric function, and the extrinsic diameter function. See, for example, the exposition in [2, Chapter II] for more details on these diameter inequalities and functions.

These diameter functions are rather weak, in that although they guarantee that the maximum intrinsic (resp. extrinsic) distance from a vertex to the basepoint in the diagram Δ is at most $f(l(w))$, they do not measure the extent to which vertices at this maximum distance can occur. For example, in the extrinsic case it may be possible to have a chain of contiguous vertices lying at the maximum distance, surrounding a region containing vertices much closer to the basepoint. In other words, the diameter functions do not distinguish how wildly or tamely these maxima occur in van Kampen diagrams. To do this, we refine the notion of a diameter function to that of a tame filling function, as follows.

To begin, we define a collection of paths along which we will measure the tameness of the diagram. Intuitively, these paths are a continuously chosen “combing” of the boundary of the van Kampen diagram, as illustrated in Figure 5. More formally, we have the following.
Definition 1.15. A van Kampen homotopy of a van Kampen diagram Δ is a continuous function $\Psi : \partial \Delta \times [0,1] \to \Delta$ satisfying:

1. whenever $p \in \partial \Delta$, then $\Psi(p,0) = *$ and $\Psi(p,1) = p$,
2. whenever $t \in [0,1]$, then $\Psi(*,t) = *$, and
3. whenever $p \in (\partial \Delta)^0$, then $\Psi(p,t) \in \Delta^1$ for all $t \in [0,1]$.

The diameter inequalities require a filling; that is, a collection of van Kampen diagrams for all words representing ϵ. Analogously, our refinement will require a collection $F = \{(\Delta_w, \Psi_w) \mid w \in A^*, w =_G \epsilon\}$ such that for each w, Δ_w is a van Kampen diagram with boundary word w, and $\Psi_w : \partial \Delta_w \times [0,1] \to \Delta_w$ is a van Kampen homotopy. We call such a collection F a combed filling for the pair (G, \mathcal{P}).

To streamline notation later, it will be helpful to be able to measure the distance from the basepoint to each point in the van Kampen diagram, rather than just the distance to points in the 1-skeleton. Although we do not necessarily have a metric on a Cayley 2-complex or van Kampen diagram, we can define a coarse notion of distance in any 2-complex Y as follows:

Definition 1.16. Let Y be a combinatorial 2-complex with basepoint vertex $y \in Y^0$, and let p be any point in Y. Define the coarse distance $\tilde{d}_Y(y,p)$ by:

- If p is a vertex, then $\tilde{d}_Y(y,p) := d_Y(y,p)$ is the path metric distance between the vertices y and p in the graph Y^1.
- If p is in the interior $\text{Int}(e)$ of an edge e of Y, then $\tilde{d}_Y(y,p) := \min\{d_Y(y,v) \mid v \in \partial(e)\} + \frac{1}{4}$.
- If p is in the interior of a 2-cell σ of Y, then $\tilde{d}_Y(y,p) := \max\{d_Y(y,q) \mid q \in \text{Int}(e) \text{ for edge } e \text{ of } \partial(\sigma)\} - \frac{1}{4}$.

Given any homotopy $H : Z \times [0,1] \to \Delta$ from a space Z to a van Kampen diagram Δ, we measure the tameness of H by viewing the interval $[0,1]$ as a unit of time and determining how far any homotopy path $H(p,\cdot)$ can go away from the basepoint, and yet still return much closer at a later time.

Definition 1.17. Let $f : \mathbb{N}[\frac{1}{4}] \to \mathbb{N}[\frac{1}{4}]$ be a nondecreasing function, let Z be a space, and let $\alpha : Z \times [0,1] \to \Delta$ be a continuous function onto a van Kampen diagram Δ with basepoint $*$, satisfying $\alpha(p,0) = *$ for all $p \in Z$. The map α is called intrinsically f-tame if for all
\(p \in \mathbb{Z} \) and \(0 \leq s < t \leq 1 \), we have
\[
\tilde{d}_\Delta(*, \alpha(p, s)) \leq f(\tilde{d}_\Delta(*, \alpha(p, t))) .
\]
Similarly, the map \(\alpha \) is extrinsically \(f \)-tame if for all \(p \in \mathbb{Z} \) and \(0 \leq s < t \leq 1 \), we have
\[
\tilde{d}_X(\epsilon, \pi_\Delta(\alpha(p, s))) \leq f(\tilde{d}_X(\epsilon, \pi_\Delta(\alpha(p, t)))) .
\]

Putting these concepts together yields the filling invariant.

Definition 1.18. A group \(G \) with finite presentation \(\mathcal{P} \) satisfies an intrinsic [respectively, extrinsic] tame filling inequality for a nondecreasing function \(f : \mathbb{N}[\frac{1}{4}] \to \mathbb{N}[\frac{1}{4}] \) if for all \(w \in A^* \) with \(w =_G \epsilon \), there exists a van Kampen diagram \(\Delta \) for \(w \) over \(\mathcal{P} \) and an intrinsically [respectively, extrinsically] \(f \)-tame van Kampen homotopy \(\Psi : \partial \Delta \times [0, 1] \to \Delta \).

Thus for any point \(p \in \partial \Delta \), the function \(\Psi(p, \cdot) : [0, 1] \to \Delta \) is a path from \(* \) to \(p \), such that if at any time \(s \in [0, 1] \) the path has reached a distance \(f(q) \) from \(*\) for some \(q \in \mathbb{N} [\frac{1}{4}] \), then at all later times \(f > s \), the path cannot return to a distance from \(*\) that is less than or equal to \(q \). Essentially, a tame filling inequality implies that the paths in \(\Delta \) from the basepoint to the boundary must go outward steadily, and not keep returning to \(n \)-cells in \(\Delta \) (with \(n \leq 2 \)) that are significantly closer to the basepoint.

In contrast to diameter inequalities, tame filling inequalities do not depend on the length \(l(w) \) of the word \(w \). Indeed, the property that a homotopy path \(\Psi(p, \cdot) \) cannot return to a distance less than \(q \) from the basepoint after it has reached a distance greater than \(f(q) \) is uniform for all reduced words over \(A \) representing \(\epsilon \). So, it is not clear whether every pair \((G, \mathcal{P})\) admits a well-defined (intrinsic or extrinsic) tame filling inequality.

2. Relationships among filling invariants

The following proposition shows that for finitely presented groups, tameness inequalities imply diameter inequalities.

Proposition 2.1. If a group \(G \) with finite presentation \(\mathcal{P} \) satisfies an intrinsic [resp. extrinsic] tame filling inequality for a nondecreasing function \(f : \mathbb{N}[\frac{1}{4}] \to \mathbb{N}[\frac{1}{4}] \), then the pair \((G, \mathcal{P})\) also satisfies an intrinsic [resp. extrinsic] diameter inequality for the function \(\tilde{f} : \mathbb{N} \to \mathbb{N} \) defined by \(\tilde{f}(n) = \lceil f(n) \rceil \).

Proof. We prove this for intrinsic tameness; the extrinsic proof is similar. Let \(w \) be any word over the generating set \(A \) of the presentation \(\mathcal{P} \) representing the trivial element \(\epsilon \) of \(G \), and let \(\Delta, \Psi \) be a van Kampen diagram and homotopy for \(w \) satisfying the intrinsically \(f \)-tame condition in Definition 1.17. Since the function \(\Psi \) is continuous, each vertex \(v \in \Delta^0 \) satisfies \(v = \Psi(p, s) \) for some \(p \in \partial \Delta \) and \(s \in [0, 1] \). There is an edge path along \(\partial \Delta \) from \(*\) to \(p \) labeled by at most half of the word \(w \), and so \(\tilde{d}_\Delta(*, p) \leq \frac{l(w)}{2} \). Using the facts that \(p = \Psi(p, 1) \) and \(s \leq 1 \), the \(f \)-tame condition implies that \(\tilde{d}_\Delta(*, v) \leq f(\frac{l(w)}{2}) \). Since \(f \) is nondecreasing, the result follows. \(\square \)

In [4], Bridson and Riley give an example of a finitely presented group \(G \) whose (minimal) intrinsic and extrinsic diameter functions are not Lipschitz equivalent. While we have not
resolved the relationship between tame filling inequalities in general, we give bounds on their interconnections in Lemma 2.2. This lemma will be applied in several examples later in this paper.

Lemma 2.2. Let G be a finitely presented group with Cayley complex X and combed filling \mathcal{F}. Suppose that $j : \mathbb{N} \to \mathbb{N}$ is a nondecreasing function such that for every vertex v of a van Kampen diagram Δ in \mathcal{F}, $d_\Delta(*, v) \leq j(d_X(\epsilon, \pi_\Delta(v)))$, and let $\tilde{j} : \mathbb{N}[\frac{1}{4}] \to \mathbb{N}[\frac{1}{4}]$ be defined by $\tilde{j}(n) := j([n]) + 1$.

1. If G satisfies an extrinsic tame filling inequality for the function f with respect to \mathcal{F}, then G satisfies an intrinsic tame filling inequality for the function $\tilde{j} \circ f$.
2. If G satisfies an intrinsic tame filling inequality for the function f with respect to \mathcal{F}, then G satisfies an extrinsic tame filling inequality for the function $f \circ \tilde{j}$.

Proof. We begin by showing that the inequality restriction for j on vertices holds for the function \tilde{j} on all points in the van Kampen diagrams in \mathcal{F}, using the fact that coarse distances on edges and 2-cells are closely linked to those of vertices. Let $(\Delta, \Psi) \in \mathcal{F}$ and let p be any point in Δ. Among the vertices in the boundary of the open cell of Δ containing p, let v be the vertex whose coarse distance to the basepoint $*$ is maximal. Then $d_\Delta(*, p) \leq d_\Delta(*, v) + 1$. Moreover, $\pi_\Delta(v)$ is again a vertex in the boundary of the open cell of X containing $\pi_\Delta(p)$, and so $\tilde{d}_X(\epsilon, \pi_\Delta(v)) \leq [\tilde{d}_X(\epsilon, \pi_\Delta(p))]$. Applying the fact that j is nondecreasing, then $\tilde{d}_\Delta(*, p) \leq \tilde{d}_\Delta(*, v) + 1 \leq j(\tilde{d}_X(\epsilon, \pi_\Delta(v))) + 1 \leq j([\tilde{d}_X(\epsilon, \pi_\Delta(p))]) + 1$. Hence the second inequality in

$$\tilde{d}_X(\epsilon, \pi_\Delta(p)) \leq \tilde{d}_\Delta(*, p) \leq \tilde{j}(\tilde{d}_X(\epsilon, \pi_\Delta(p)))$$

(a)

follows. The first inequality is a consequence of the fact that coarse distance can only be preserved or decreased by the natural map π_Δ from any van Kampen diagram to the Cayley complex.

Now suppose that G (with its finite presentation) satisfies an extrinsic tame filling inequality for the function $f : \mathbb{N}[\frac{1}{4}] \to \mathbb{N}[\frac{1}{4}]$ with respect to \mathcal{F}. Then for all $p \in \Delta$ and for all $0 \leq s < t \leq 1$, we have $\tilde{d}_\Delta(*, \Psi(p, s)) \leq \tilde{j}(\tilde{d}_X(\epsilon, \pi_\Delta(\Psi(p, s)))) \leq \tilde{j}(f(\tilde{d}_X(\epsilon, \pi_\Delta(\Psi(p, t)))))) \leq \tilde{j}(f(\tilde{d}_\Delta(*, \Psi(p, t))))$ where the first and third inequalities follow from (a), and the second uses the extrinsic tame filling inequality and the nondecreasing property of \tilde{j}. This completes the proof of (1).

The proof of (2) is similar. \square

3. **Tame filling inequalities and tame combings**

The purpose of this section is twofold. The ultimate goal is to prove Corollary 3.4, connecting the concepts of tame combings and tame filling inequalities. We also give a pair of results that provide more tractable methods for constructing combed fillings. Lemma 3.1 will be applied to stackable groups in Section 4, as well as in the proof of Theorem 5.6. This lemma also is part of the stronger Proposition 3.2, which will be essential to the proofs of Corollary 3.4 and Theorem 7.1.
In our first lemma, we extend the “seashell” method of constructing a filling from a normal filling (discussed in Section 1.3, see p. 11), to combed fillings. Let \(G \) be a group with symmetrized presentation \(\mathcal{P} = \langle A \mid R \rangle \) and a set \(\mathcal{N} = \{ y_g \mid g \in G \} \subseteq A^* \) of simple word normal forms for \(G \) containing the empty word, and let \(\{ \Delta_e \mid e \in E(X) \} \) be a normal filling. Recall that each normal form diagram \(\Delta_e \) is associated to a directed edge \(e_g, a \) with underlying edge \(e \); then \(\Delta_e \) has boundary label \(y_g y_a y_{ga}^{-1} \) and a distinguished edge \(\hat{e} \) from vertex \(v_1 \) to vertex \(v_2 \) in the boundary, corresponding to the letter \(a \). An edge homotopy of \(\Delta_e \) is a continuous function \(\Theta : \hat{e} \times [0, 1] \to \Delta \) such that whenever \(p \) is a point in \(\hat{e} \), then \(\Theta(p, 0) = * \) and \(\Theta(p, 1) = p \), and the paths \(\Theta(v_1, \cdot) : [0, 1] \to \Delta \) for \(i = 1 \) and \(i = 2 \) follow the paths labeled \(y_g \) and \(y_{ga} \), respectively, in \(\partial \Delta \). A combed normal filling for the pair \((G, \mathcal{P})\) consists of a set \(\mathcal{N} \) normal forms for \(G \) (as usual including the empty word) that label simple paths in the Cayley complex \(X \), together with a collection \(\mathcal{E} = \{ (\Delta_e, \Theta_e) \mid e \in E(X) \} \) of normal form diagrams and edge homotopies satisfying the following gluing condition: For every pair of edges \(e, e' \in E(X) \) with a common endpoint \(g \), this condition requires that \(\pi_{\Delta_e} \circ \Theta_e(\hat{g}_e, t) = \pi_{\Delta_{e'}} \circ \Theta_{e'}(\hat{g}_{e'}, t) \) for all \(t \in [0, 1] \), where \(\hat{g}_e \) and \(\hat{g}_{e'} \) are the vertices of \(\hat{e} \) in \(\Delta_e \) and \(\hat{e}' \) in \(\Delta_{e'} \) mapping to \(g \), respectively; that is, at these vertices \(\Theta_e \) and \(\Theta_{e'} \) project to the same path, with the same parametrization, in the Cayley complex \(X \).

A combed normal filling is geodesic if all of the words in the normal form set \(\mathcal{N} \) label geodesics in the associated Cayley graph.

Lemma 3.1. A combed normal filling \((\mathcal{N}, \mathcal{E})\) for a group \(G \) over a finite presentation \(\mathcal{P} \) induces a combed filling satisfying the property that if all of the edge homotopies of \(\mathcal{E} \) are extrinsically \(f \)-tame for a nondecreasing function \(f : \mathbb{N}[\frac{1}{2}] \to \mathbb{N}[\frac{1}{2}] \), then the induced van Kampen homotopies of the combed filling are also extrinsically \(f \)-tame. Moreover in the case that the combed normal filling is geodesic, if all of the edge homotopies are intrinsically \(f \)-tame, then the induced van Kampen homotopies are also intrinsically \(f \)-tame.

Proof. Given a word \(w = a_1 \cdots a_n \) with \(w = G e \) and each \(a_i \in A \), let \((\Delta_i, \Theta_i)\) be the element of \(\mathcal{E} \) corresponding to the edge of \(X \) with endpoints \(a_1 \cdots a_{i-1} \) and \(a_1 \cdots a_i \). If necessary replacing \(\Delta_i \) by its mirror image and altering \(\Theta_i \) accordingly, we may assume that \(\Delta_i \) has boundary label \(y_{a_{i-1}a_i} y_i \), where \(y_i \) is the normal form in \(\mathcal{N} \) of \(a_1 \cdots a_i \). Using the seashell procedure, let \(\Delta_w \) be the van Kampen diagram for \(w \) obtained by successively gluing these diagrams along their (simple) \(y_i \) boundary subpaths. This procedure yields a quotient map \(\alpha : \prod \Delta_i \to \Delta_w \), such that each restriction \(\alpha_i : \Delta_i \to \Delta_w \) is an embedding.

Let \(\hat{e}_i \) be the edge in the boundary path of \(\Delta_i \) (and by slight abuse of notation also in the boundary of \(\Delta_w \)) corresponding to the letter \(a_i \). In order to build a van Kampen homotopy on \(\Delta_w \), we note that the edge homotopies \(\Theta_i \) give a continuous function \(\alpha \circ \prod \Theta_i : \prod \hat{e}_i \times [0, 1] \to \Delta_w \). The gluing condition in the definition of combed normal filling implies that on the common endpoint \(v_i \) of the edges \(\hat{e}_i \) and \(\hat{e}_{i+1} \) of \(\Delta_w \), the paths \(\pi_{\Delta_i} \circ \Theta_i(v_i, \cdot) \) and \(\pi_{\Delta_{i+1}} \circ \Theta_{i+1}(v_{i+1}, \cdot) \) follow the edge path in \(X \) labeled \(y_i \) with the same parametrization. Hence the same is true for the functions \(\Theta_i(\hat{v}_i, \cdot) \) and \(\Theta_{i+1}(\hat{v}_{i+1}, \cdot) \) following the edge paths labeled \(y_i \) that were glued by \(\alpha \). Moreover, if an \(\hat{e}_i \) edge and (the reverse of) an \(\hat{e}_j \) edge are glued via \(\alpha \), the maps \(\Theta_i \) and \(\Theta_j \) have been chosen to be consistent. Hence the collection of maps \(\Theta_i \) are consistent on points identified by the gluing map \(\alpha \), and we obtain an
Suppose that \(\beta \in \Delta_w \) is an edge path in \(\Delta \) of length strictly less than \(d \) and extrinsic tameness is preserved (up to Lipschitz equivalence). However, this converse holds; that is, that every combed filling induces a combed normal filling such that intrinsic tameness of homotopies is preserved by the seashell construction in this perspective of whether or not the normal forms are geodesics. That is, for any point \(p \in \Delta \), \(\Theta_i \) is an extrinsically \(f \)-tame map, the homotopy \(\Psi_{\alpha} \) is also extrinsically \(f \)-tame.

Next suppose that each of the words in the set \(\mathcal{N} \) of normal forms are geodesic. To show that intrinsic \(f \)-tameness of homotopies is preserved by the seashell construction in this case, it similarly suffices to show that the map \(\alpha \) preserves intrinsic distance.

In order to analyze coarse distances in the van Kampen diagram \(\Delta_w \), we begin by supposing that \(p \) is any vertex in \(\Delta_w \). Then \(p = \alpha(q) \) for some vertex \(q \in \Delta_i \) (for some \(i \)). The identification map \(\alpha \) cannot increase distances to the basepoint, so we have \(d_{\Delta_w}(\ast, p) \leq d_{\Delta_i}(\ast, q) \). Suppose that \(\beta : [0, 1] \to \Delta_w \) is an edge path in \(\Delta_w \) from \(\beta(0) = \ast \) to \(\beta(1) = p \) of length strictly less than \(d_{\Delta_i}(\ast, q) \). This path cannot stay in the (closed) subcomplex \(\alpha(\Delta_i) \) of \(\Delta_w \), and so there is a minimum time \(0 < s \leq 1 \) such that \(\beta(t) \in \alpha(\Delta_i) \) for all \(t \in [s, 1] \). Then the point \(\beta(s) \) must lie on the image of the boundary of \(\Delta_i \) in \(\Delta_w \). Since the words \(y_{i-1} \) and \(y_i \) label geodesics in the Cayley complex of the presentation \(\mathcal{P} \), these words must also label geodesics in \(\Delta_i \) and \(\Delta_w \). Hence we can replace the portion of the path \(\beta \) on the interval \([0, s]\) with the geodesic path along one of these words from \(\ast \) to \(\beta(s) \), to obtain a new edge path in \(\alpha(\Delta_i) \) from \(\ast \) to \(p \) of length strictly less than \(d_{\Delta_i}(\ast, q) \). Since \(\alpha \) embeds \(\Delta_i \) in \(\Delta_w \), this results in a contradiction. Thus for each vertex \(p = \alpha(q) \) in \(\Delta_w \), we have \(d_{\Delta_w}(\ast, p) = d_{\Delta_i}(\ast, q) \). Since the coarse distance from the basepoint to any point in the interior of an edge or 2-cell in \(\Delta_w \) is computed from path metric distances of vertices, this also shows that for any point \(p \) in \(\Delta_w \) with \(p = \alpha(q) \) for some point \(q \in \Delta_i \), we have \(d_{\Delta_w}(\ast, p) = d_{\Delta_i}(\ast, q) \), as required.

The heart the proof of Corollary 3.4 consists of showing that the converse of Lemma 3.1 holds; that is, that every combed filling induces a combed normal filling such that intrinsic and extrinsic tameness is preserved (up to Lipschitz equivalence). However, this converse
requires more work, because the domain of the homotopy essentially needs to be rerouted from the entire boundary of a van Kampen diagram to a single edge.

In order to accomplish this, we first need to "lift" the domain from the boundary of the van Kampen diagram up to a circle. In Definition 1.15, our definition of a van Kampen homotopy $\Psi : \partial \Delta \times [0,1] \to \Delta$ is “natural”, in the sense that the first factor in the domain of this function is a subcomplex of the associated van Kampen diagram Δ; however, this requires that for each point p on an edge e of $\partial \Delta$, there is a unique choice of path from the basepoint $*$ to p via this homotopy. When traveling along the boundary $\partial \Delta$ counterclockwise, a point p (and undirected edge e) may be traversed more than once, and we use our lift to relax this constraint and allow different combings of this edge corresponding to the different traversals.

Let S^1 denote the unit circle in the \mathbb{R}^2 plane. For any natural number n, let C_n be S^1 with a 1-complex structure consisting of n vertices (one of which is the basepoint $(-1,0)$) and n edges. Given any van Kampen diagram Δ over P for a word w of length n, let $\vartheta_\Delta : C_n \to \partial \Delta$ be the function that maps $(-1,0)$ to $*$ and, going counterclockwise once around C_n, maps each subsequent edge of C_n homeomorphically onto the next edge in the counterclockwise path labeled w along the boundary of Δ.

A disk homotopy of a van Kampen diagram Δ over P for a word w of length n is a continuous function $\Phi : C_n \times [0,1] \to \Delta$ satisfying:

1. (d1): whenever $p \in C_n$, then $\Phi(p,0) = *$ and $\Phi(p,1) = \vartheta_\Delta(p)$,
2. (d2): whenever $t \in [0,1]$, then $\Phi((-1,0),t) = *$, and
3. (d3): whenever $p \in C_n^0$, then $\Phi(p,t) \in \Delta^1$ for all $t \in [0,1]$.

A S^1-combed filling is a collection $\mathcal{D} = \{ (\Delta_w, \Phi_w) \mid w \in A^*, w \equiv_G \epsilon \}$ such that for each w, Δ_w is a van Kampen diagram for w, and Φ_w is a disk homotopy of Δ_w.

In Proposition 3.2 below, the extrinsic result (1) \Leftrightarrow (4) (or (3)) is used in the proof of Corollary 3.4, and the equivalence (1) \Leftrightarrow (2) in both the intrinsic and extrinsic cases is used in the quasi-isometry invariance proof for Theorem 7.1.

Proposition 3.2. Let G be a group with a finite symmetrized presentation P, and let $f : \mathbb{N}_{\frac{1}{4}} \to \mathbb{N}_{\frac{1}{4}}$ be a nondecreasing function. The following are equivalent, up to Lipschitz equivalence of the function f:

1. (G,P) satisfies an extrinsic [respectively, intrinsic] tame filling inequality with respect to f.
2. (G,P) has a S^1-combed filling with extrinsically [respectively, intrinsically] f-tame disk homotopies.
3. (G,P) has a geodesic combed normal filling with extrinsically [respectively, intrinsically] f-tame edge homotopies.

In addition, in the extrinsic case:

4. (G,P) has a combed normal filling with extrinsically f-tame edge homotopies.

Proof. In the extrinsic case, the result (3) \Rightarrow (4) is immediate. The implications (4) \Rightarrow (1) in the extrinsic case and (3) \Rightarrow (1) in the intrinsic case are Lemma 3.1.
Given a van Kampen diagram Δ for a word w and a van Kampen homotopy $\Psi : \partial \Delta \times [0, 1] \to \Delta$, the composition $\Phi = \Psi \circ (\vartheta_\Delta \times id_{[0, 1]}) : C_n \times [0, 1] \to \Delta$ is a disk homotopy for this diagram. The fact that the identity function is used on the $[0,1]$ factor implies the result that tameness of the homotopies is preserved.

(2) \Rightarrow (3):

Suppose that $\mathcal{F} = \{ (\Delta_w, \Phi_w) \mid w \in A^*, w =_G e \}$ is a S^1-combed filling.

Let $\mathcal{N} := \{ y_g \mid g \in G \}$ be the set of shortlex normal forms with respect to some total ordering of A. That is, for any two words z, z' over A, define $z <_s z'$ if the length of the word z is less than the length of z', or else the lengths of the words are equal and z is less than z' in the corresponding lexicographic ordering on A^*.

For any edge $e \in E(X)$, we orient the edge e from vertex g to $h = ga$ if $y_g <_s y_{ga}$. There is a pair $(\Delta_{w_e}, \Phi_{w_e})$ in \mathcal{F} associated to the word $w_e := y_g a y_h^{-1}$. Define $\Delta_e := \Delta_{w_e}$, and let \dot{e} be the edge in the boundary path of Δ_{w_e} corresponding to the letter a in the concatenated word w_e.

We construct an edge homotopy $\Theta_e : \dot{e} \times [0, 1] \to \Delta_e$ as follows. Associated with the map Φ_{w_e} we have a map $\vartheta_{\Delta_e} : C_{l(w_e)} \to \partial \Delta_e$, given by $\vartheta_{\Delta_e}(q) = \Phi_{w_e}(q, 1)$, using disk homotopy condition (d1). Recall that this map wraps the simple edge circuit $C_{l(w_e)}$ cellurally along the edge path of $\partial \Delta_e$. Let $\gamma : \dot{e} \to C_{l(w_e)}$ be a continuous map that wraps the edge \dot{e} once (at constant speed) in the counterclockwise direction along the circle, with the endpoints of \dot{e} mapped to $(-1, 0)$. For each point p in \dot{e}, and for all $t \in [0, \frac{1}{2}]$, define $\Theta_e(p, t) := \Phi_{w_e}(\gamma(p), 2t)$. Then $\Theta_e(p, \frac{1}{2}) = \vartheta_{\Delta_e}(\gamma(p)) \in \partial \Delta_e$.

Let \tilde{e} be the (directed) edge of $C_{l(w_e)}$ corresponding to the edge \dot{e} of the boundary path in $\partial \Delta_e$, with endpoint v_1 of \tilde{e} occurring earlier than endpoint v_2 in the counterclockwise path from $(-1, 0)$. Also let \tilde{r}_1, \tilde{r}_2 be the arcs of $C_{l(w_e)}$ mapping via ϑ_{Δ_e} to the paths labeled by the subwords y_g, y_h^{-1}, respectively, of w_e in $\partial \Delta_e$. For each point p in the interior $Int(\tilde{e})$ of the edge \tilde{e}, there is a unique point \tilde{p} in \tilde{e} with $\vartheta_{\Delta_e}(\tilde{p}) = p$. There is an arc (possibly a single point) in $C_{l(w_e)}$ from $\gamma(p)$ to \tilde{p} that is disjoint from the point $(-1, 0)$; let $\delta_p : [\frac{1}{2}, 1] \to C_{l(w_e)}$ be the constant speed path following this arc. That is, $\vartheta_{\Delta_e} \circ \delta_p$ is a path in $\partial \Delta_e$ from $\vartheta_{\Delta_e}(\gamma(p))$ to p. In particular, if $\gamma(p)$ lies in \tilde{r}_1, then the path $\vartheta_{\Delta_e} \circ \delta_p$ follows the end portion of the boundary path labeled by y_g from $\vartheta_{\Delta_e}(\gamma(p))$ to the endpoint $\vartheta_{\Delta_e}(v_1)$ of \dot{e} and then follows a portion of \dot{e} to p. If $\gamma(p)$ lies in \tilde{r}_2, the path $\vartheta_{\Delta_e} \circ \delta_p$ follows a portion of the boundary path y_h and \dot{e} clockwise from $\vartheta_{\Delta_e} \circ \delta_p$ via $\vartheta_{\Delta_e}(v_2)$ to p, and if $\gamma(p)$ is in \tilde{e}, then the path $\vartheta_{\Delta_e} \circ \delta_p$ remains in \tilde{e}. Finally, for each point p that is an endpoint $p = \vartheta_{\Delta_e}(v_i)$ (with $i = 1, 2$), let $\delta_p : [\frac{1}{2}, 1] \to C_{l(w_e)}$ be the constant speed path along the arc \tilde{r}_i in $C_{l(w_e)}$ from $(-1, 0)$ to v_i. Now for all p in \tilde{e} and $t \in [\frac{1}{2}, 1]$, define $\Theta_e(p, t) := \vartheta_{\Delta_e}(\delta_p(t))$.

Combining the last sentences of the previous two paragraphs, we have constructed a continuous function $\Theta_e : \dot{e} \times [0, 1] \to \Delta_e$. See Figure 7 for an illustration of this map. The disk homotopy conditions satisfied by Φ_{w_e} imply that Θ_e is an edge homotopy. Let $\mathcal{E} = \{ (\Delta_e, \Theta_e) \mid e \in E(X) \}$. Then \mathcal{N} together with \mathcal{E} define a geodesic combed normal filling of the pair (G, P).

Now we turn to analyzing the tameness of the edge homotopy $\Theta_e : \hat{e} \times [0, 1] \to \Delta_e$. We will give the proof for the extrinsic case; the intrinsic proof is nearly identical. Suppose that each disk homotopy Φ_w of the S^1-combed filling D is extrinsically f-tame.

Suppose that p is any point in \hat{e}. Then tameness of Φ_w implies that for all $0 \leq s < t \leq \frac{1}{2}$, we have $\tilde{d}_X(\epsilon, \pi_{\Delta_e}(\Theta_e(p, s))) \leq f(\tilde{d}_X(\epsilon, \pi_{\Delta_e}(\Theta_e(p, t))))$.

The path $\pi_{\Delta_e}(\Theta_e(p, s)) = \pi_{\Delta_e}(\delta_{\hat{e} \to \hat{g}}(\cdot)) : [\frac{1}{2}, 1] \to X$ on the second half of the interval $[0, 1]$ follows a portion of a geodesic in X (labeled y_g or y_{ga}) going steadily away from the basepoint ϵ, with the possible exception of the end portion of this path that lies completely contained in the edge e. Hence for all $\frac{1}{2} \leq s < t \leq 1$, we have $\tilde{d}_X(\epsilon, \pi_{\Delta_e}(\Theta_e(p, s))) \leq \tilde{d}_X(\epsilon, \pi_{\Delta_e}(\Theta_e(p, t))) + 1$.

Finally, whenever $0 \leq s < \frac{1}{2} < t \leq 1$, we have

$$\tilde{d}_X(\epsilon, \pi_{\Delta_e}(\Theta_e(p, s))) \leq f(\tilde{d}_X(\epsilon, \pi_{\Delta_e}(\Theta_e(p, \frac{1}{2})))) \leq f(\tilde{d}_X(\epsilon, \pi_{\Delta_e}(\Theta_e(p, t)))) + 1,$$

where the latter inequality uses the nondecreasing property of f.

Putting these three cases together, the edge homotopy Θ_e is extrinsically g-tame with respect to the nondecreasing function $g : \mathbb{N}\left[\frac{1}{4}\right] \to \mathbb{N}\left[\frac{1}{4}\right]$ given by $g(n) = f(n + 1)$ for all $n \in \mathbb{N}\left[\frac{1}{4}\right]$, and this function is Lipschitz equivalent to f. □

Finally we are ready turn to the concept of 1-combings and tame combability first defined by Mihalik and Tschantz in [18]. A 1-combing of the Cayley complex X is a continuous function $\Upsilon : X^1 \times [0, 1] \to X$ satisfying that whenever $p \in X^1$, then $\Upsilon(p, 0) = \epsilon$ and $\Upsilon(p, 1) = p$, and whenever $p \in X^0$, then $\Upsilon(p, t) \in X^1$ for all $t \in [0, 1]$. That is, a 1-combing is a continuous choice of paths in the Cayley 2-complex X from the vertex ϵ labeled by the identity of G to each point of the Cayley graph X^1, such that the paths to vertices are required to stay inside the 1-skeleton.

Mihalik and Tschantz [18] defined a notion of tameness of a 1-combing, which Hermiller and Meier [12] refined to the idea of the 1-combing homotopy being f-tame with respect to a function f, which they call a “radial tameness function”. (In [12], coarse distance in X is described in terms of “levels”, and the definition of coarse distance for a 2-cell is defined.
slightly differently from that of Definition 1.16.) The 1-combings considered in [12] and here satisfy more restrictions than those of Mihalik and Tschantz, in that the 1-combing lifts to van Kampen diagrams. More precisely, a diagrammatic 1-combing of \(X \) is a 1-combing \(\Upsilon : X^1 \times [0,1] \to X \) that also satisfies:

(c1): whenever \(v \) is a vertex in \(X \), the path \(\Upsilon(v, \cdot) \) follows a simple edge path (i.e., no repeated vertices or edges) from \(\epsilon \) to \(v \) labeled by a word \(w_v \), with \(w_\epsilon = 1 \), and

(c2): whenever \(e \) is a directed edge from vertex \(u \) to vertex \(v \) in \(X \) labeled by \(a \), then there is a van Kampen diagram \(\Delta \) with respect to \(P \) for the word \(w_u aw_v^{-1} \), together with an edge homotopy \(\Theta : \hat{e} \times [0,1] \to \Delta \) associated to the edge \(\hat{e} \) of \(\partial \Delta \) corresponding to the letter \(a \) in this boundary word, such that \(\Upsilon \circ (\pi_\Delta \times id_{[0,1]})(\hat{e} \times [0,1]) = \pi_\Delta \circ \Theta \).

Definition 3.3. [12] A group \(G \) with finite presentation \(P \) satisfies a radial tame combing inequality for a nondecreasing function \(\rho : \mathbb{N}[\frac{1}{4}] \to \mathbb{N}[\frac{1}{4}] \) if there is a diagrammatic 1-combing \(\Upsilon \) of the associated Cayley 2-complex \(X \) such that

\[
\hat{d}_X(\epsilon, \Upsilon(p, s)) \leq \rho(\hat{d}_X(\epsilon, \Upsilon(p, t))).
\]

The equivalence of extrinsic tame filling inequalities with radial tame combing inequalities in Corollary 3.4 now follows from the observation that diagrammatic 1-combings are projections of combed normal fillings in the Cayley complex, along with Proposition 3.2.

Corollary 3.4. Let \(G \) be a group with a finite symmetrized presentation \(P \). Up to Lipschitz equivalence of nondecreasing functions, the pair \((G, P) \) satisfies an extrinsic tame filling inequality for a function \(f \) if and only if \((G, P) \) satisfies a radial tame combing inequality with respect to \(f \).

Proof. In the case that the pair \((G, P) \) satisfies an extrinsic tame filling inequality for the function \(f \) then, applying Proposition 3.2, we also have that \((G, P) \) has a combed normal filling given by a set \(N \) of normal forms together with a collection \(E = \{ (\Delta_e, \Theta_e) \mid e \in E(X) \} \) of van Kampen diagrams and edge homotopies, for which each of the \(\Theta_e \) is extrinsically \(g \)-tame, where \(g(n) = f(n+1) \). We associate a 1-combing \(\Upsilon \) of the Cayley complex \(X \) defined as follows. For any point \(p \) in the Cayley graph \(X^1 \), let \(u \) be an edge in \(X \) containing \(p \). Then for any \(t \in [0,1] \), define \(\Upsilon(p, t) := \pi_{\Delta_u}(\Theta_u(p, t)) \). The gluing condition of the definition of a combed normal filling ensures that \(\Upsilon \) is well-defined. Then extrinsic \(g \)-tameness of the edge homotopy \(\Theta_u \) then implies that the condition \((\dagger^r)\) with respect to the same function \(g(n) = f(n+1) \) also holds.

On the other hand, suppose that \((G, P) \) satisfies a radial tame combing inequality with respect to \(f \). Given a diagrammatic 1-combing \(\Upsilon \), the definition of diagrammatic implies that there is an associated combed normal filling through which \(\Upsilon \) factors, as well. Again we have \((\dagger^r)\) implies that each of the edge homotopies of this combed normal filling is \(f \)-tame, with respect to the same function \(f \), as an immediate consequence, and Proposition 3.2 completes the proof. \(\square \)
We note that each of the properties in Proposition 3.2 and Corollary 3.4 must also have the same quasi-isometry invariance as the respective tame filling inequality, from Theorem 7.1. Combining this corollary with Proposition 2.1 shows that a radial tame combing inequality is a strengthening of an extrinsic diameter inequality.

The radial tame combing inequality property is fundamentally an extrinsic property, using (coarse) distances measured in the Cayley complex. Corollary 3.4 above shows that the logical intrinsic analog of a radial tame combing inequality is the concept of an intrinsic tame filling inequality. Another consequence of this corollary together with the proof of Proposition 3.2 is that given a radial tame combing inequality for a pair \((G, \mathcal{P})\) with respect to a function \(f\), by replacing \(f\) with a Lipschitz equivalent function we can restrict the diagrammatic 1-combing \(\Upsilon\) so that the set of paths \(\Upsilon : X^0 \times [0,1] \to X\) to vertices in \(X\) follow the shortlex normal forms.

4. Combed fillings for stackable groups

In this section we give an inductive procedure for constructing a combed normal filling for any stackable group. Recall that in Section 1.3, an inductive procedure was described for building a normal filling from a stacking; in this section we extend this process to include edge homotopies. Because edge homotopies are built in this recursive fashion, we will have finer control on their tameness than for a more general combed normal filling. We will apply this extra restriction to prove in Theorem 4.2 that every stackable group admits finite-valued intrinsic and extrinsic tame filling inequalities.

Let \(G\) be a stackable group with stacking \((\mathcal{N}, c)\) over a finite inverse-closed generating set \(A\), and let \(\mathcal{P} = \langle A \mid R_c \rangle\) be the (symmetrized) stacking presentation, with Cayley complex \(X\). Let \(\overline{E}_d\) be the set of degenerate edges in \(X\), let \(\overline{E}_r\) be the set of recursive edges, and let \(<_c\) be the stacking ordering. We construct a combed normal filling for \(G\) as follows.

The set \(\mathcal{N}\) will also be the set of normal forms for the combed normal filling. For each \(g \in G\), let \(y_g\) denote the normal form for \(g\) in \(\mathcal{N}\).

For each directed edge \(e\) in \(\overline{E}(X) = \overline{E}_d \cup \overline{E}_r\), oriented from a vertex \(g\) to a vertex \(h\) and labeled by \(a \in A\), let \(w_e := y_g ay_h^{-1}\). Let \(\Delta_e\) be the normal form diagram (with boundary word \(w_e\)) associated to \(e\), obtained from the stacking by using the construction in Section 1.3.

In the case that \(e\) lies in \(\overline{E}_d\), the diagram \(\Delta_e\) contains no 2-cells. Let \(\hat{e}\) be the edge of \(\partial \Delta_e\) corresponding to \(a\) in the factorization of \(w_e\); see Figure 8. Define the edge homotopy \(\Theta_e : \hat{e} \times [0,1] \to \Delta_e\) by taking \(\Theta_e(p, \cdot) : [0,1] \to \Delta_e\) to follow the shortest length (i.e.
geodesic with respect to the path metric) path from the basepoint * to p at a constant speed, for each point p in \(\hat{e} \).

Next we use the recursive construction of the van Kampen diagram \(\Delta_e \) to recursively construct the edge homotopy in the case that \(e \in E_r \). Recall that if we write \(c(e) = a_1 \cdots a_n \) with each \(a_i \in A^* \), then the normal form diagram \(\Delta_e \) is constructed from normal form diagrams \(\Delta_i \) with boundary labels \(y_ga_1 \cdots a_i y_ga_1 \cdots a_n \), obtained by induction or from degenerate edges. These diagrams are glued along their common boundary paths \(y_i := y_ga_1 \cdots a_i \) (to obtain the “seashell” diagram \(\Delta'_e \)), and then a single 2-cell with boundary label \(c(e)a^{-1} \) is glued onto \(\Delta'_e \) along the \(c(e) \) subpath of \(\partial \Delta'_e \), to produce \(\Delta_e \).

A slightly alternative view of this construction of \(\Delta_e \) will allow us more flexibility in constructing the edge homotopy associated to this diagram, which in turn will lead to better tameness bounds later. Factor \(c(e) = \bar{x}_g^{-1} \bar{c}_e \bar{x}_h \) such that the directed edges in the paths in \(X \) labeled by \(x_g^{-1} \) starting at \(g \), and labeled by \(x_h^{-1} \) starting at \(h \), all lie in \(E_d \), and such that \(y_g = y_q x_g \) and \(y_h = y_r x_h \) where \(q := G \bar{x}_g^{-1} \) and \(r := G \bar{x}_h^{-1} \). There are indices \(j, k \) such that \(\bar{c}_e := a_j \cdots a_k \). If the word \(\bar{c}_e \) is nonempty, then \(\Delta_e \) can also be constructed by a seashell gluing of the normal form diagrams \(\Delta_j \cdots \Delta_k \) to produce a diagram \(\Delta''_e \) with boundary labeled \(y_q \bar{c}_e y_r^{-1} \), after which a single 2-cell \(f_e \) with boundary label \(c(e)a^{-1} \) is glued onto \(\Delta''_e \), along the \(\bar{c}_e \) subpath in \(\partial \Delta''_e \), to produce \(\Delta_e \). If the word \(\bar{c}_e \) is empty, then \(q = r \), and \(\Delta_e \) is obtained by taking a simple edge path from a basepoint labeled by the word \(y_q \) (i.e., the van Kampen diagram for the word \(y_q y_q^{-1} \) with no 2-cells), and attaching a single 2-cell \(f_e \) with boundary label \(c(e)a^{-1} \), gluing the end of the \(y_q \) edge path to the vertex of \(\partial f_e \) separating the \(x_g^{-1} \) and \(x_h \) subpaths. It follows from this construction that the diagrams \(\Delta_i \) and the cell \(f_e \) can be considered to be subsets of \(\Delta_e \).

Let \(\hat{e} \) be the directed edge in \(\partial \Delta_e \) from vertex \(\hat{g} \) to vertex \(\hat{h} \) corresponding to \(a \) in the factorization of \(w_e \). Let \(\hat{q} \) and \(\hat{r} \) be the vertices of the 2-cell \(f_e \) at the start and end, respectively, of the path in \(\partial f_e \) labeled by \(\bar{c}_e \). Let \(J : \hat{e} \to [0, 1] \) be a homeomorphism, with \(J(\hat{g}) = 0 \) and \(J(\hat{h}) = 1 \). Since \(f_e \) is a disk, there is a continuous function \(\Xi_e : \hat{e} \times [0, 1] \to f_e \) such that: (i) For each \(p \) in the interior \(Int(\hat{e}) \), we have \(\Xi_e(p, (0, 1)) \subseteq Int(f_e) \) and \(\Xi_e(p, 1) = p \). (ii) \(\Xi_e(J^{-1}(\cdot), 0) : [0, 1] \to f_e \) follows the path in \(\partial f_e \) labeled \(\bar{c}_e \) from \(\hat{q} \) to \(\hat{r} \) at constant speed. (iii) \(\Xi_e(\hat{g}, \cdot) \) follows the path in \(\partial f_e \) labeled \(x_g \) from \(\hat{q} \) to \(\hat{g} \) at constant speed. (iv) \(\Xi_e(\hat{h}, \cdot) \) follows the path in \(\partial f_e \) labeled \(x_h \) from \(\hat{r} \) to \(\hat{h} \) at constant speed. Let \(l_g, m_g, l_h, \) and \(m_h \) be the lengths of the words \(y_q, x_g, y_r, \) and \(x_h \) in \(A^* \), respectively.

We give a piecewise definition of the edge homotopy \(\Theta_e : \hat{e} \times [0, 1] \to \Delta_e \) as follows. For any point \(p \) in \(\hat{e} \), if \(\bar{c}_e \) is a nonempty word, then there is an index \(j \leq i \leq k \) such that the point \(\Xi_e(p, 0) \) lies in \(\Delta_j \). In the case that \(\bar{c}_e = 1 \), let \(\Theta_i(\hat{q}, \cdot) \) in the following formula denote the constant speed path following the geodesic in \(\Delta_e \) from \(* \) to \(\hat{q} = \hat{r} \). Define

\[
\Theta_e(p, t) := \begin{cases}
\Theta_i(\Xi_e(p, 0), \frac{1}{a_p} t) & \text{if } t \in [0, a_p] \\
\Xi_e(p, \frac{1}{a_p} (t - a_p)) & \text{if } t \in [a_p, 1]
\end{cases}
\]

where

\[
a_p := \begin{cases}
\frac{2l_g}{l_g + m_g} \left(\frac{1}{2} - J(p) \right) + J(p) & \text{if } J(p) \in [0, \frac{1}{2}] \\
(1 - J(p)) + \frac{2m}{l_h + m_h} (J(p) - \frac{1}{2}) & \text{if } J(p) \in \left[\frac{1}{2}, 1 \right]
\end{cases}
\]
Note that if $a_p = 0$ and $J(p) \in [0, \frac{1}{2})$, then we must also have $J(p) = 0$ and $l_g = 0$. In this case $p = \hat{g}$ and y_g is the empty word, and so $\Theta_i(\Xi_e(p, 0), \cdot) = \Theta_i(\hat{g}, \cdot)$ is a constant path at the basepoint \ast of Δ_e; hence Θ_e is well-defined in this case. The other instances in which a_p can equal 0 or 1 are similar.

The complication in this definition of Θ_e stems from the need to ensure that for the endpoint vertices \hat{g} and \hat{h} of \hat{e}, the projections to X of the paths $\Theta_e(\hat{g}, \cdot)$ and $\Theta_e(\hat{h}, \cdot)$ via the map π_{Δ_e} are consistent with the paths defined for all other edges to these points; that is, to ensure that the property (n3) of the definition of combed normal filling will hold. In particular, we ensure that the paths $\Theta_e(\hat{g}, \cdot)$, $\Theta_e(\hat{h}, \cdot)$ follow the words y_g, y_h, respectively, in $\partial \Delta_e$ at constant speed. The van Kampen diagram Δ_e and edge homotopy Θ_e are illustrated in Figure 9.

We now have a collection of van Kampen diagrams and edge homotopies for the elements of $\vec{E}(X)$. To obtain the combed normal filling associated to the stacking, the final step again is to eliminate repetitions. Given any undirected edge e in $E(X)$, let (Δ, Θ_e) be a normal form diagram and edge homotopy constructed above for one of the orientations of e. Then the collection \mathcal{N} of prefix-closed normal forms from the stacking, together with this collection $\mathcal{E} := \{(\Delta_e, \Theta_e) \mid e \in E(X)\}$ of van Kampen diagrams and edge homotopies, is a combed normal filling for G. From Lemma 3.1, this combed normal filling induces a combed filling using the seashell method.

Definition 4.1. A recursive combed normal filling is a combed normal filling that can be constructed from a stacking by the above procedure. A recursive combed filling is a combed filling induced by a recursive combed normal filling using seashells.

The extra structure of this recursively defined combed normal filling $(\mathcal{N}, \mathcal{E})$ allows us to compute finite-valued tame filling inequalities for G. To analyze the tameness of the edge homotopies, we consider the intrinsic diameter $\text{idiam}(\Delta_e)$ and extrinsic diameter $\text{ediam}(\Delta_e)$ of each van Kampen diagram in the collection \mathcal{E}; that is, $\text{idiam}(\Delta_e) = \max\{d_{\Delta_e}(\epsilon, v) \mid v \in \Delta_e^0\}$ and $\text{ediam}(\Delta_e) = \max\{d_X(\epsilon, \pi_{\Delta_e}(v)) \mid v \in \Delta_e^0\}$, where X is the Cayley complex of the stacking presentation. Let $B(n)$ be the ball of radius n (with respect to path metric distance) in the Cayley graph X^1 centered at ϵ. Define the functions $k^i_N, k^r_N, k^i_e, k^r_e : \mathbb{N} \to \mathbb{N}$.
Note that we do not assume that prefixes are proper. (Also note that the van Kampen diagrams in the combed filling induced by the recursive combed normal filling \((N, E)\) may not realize the minimal possible intrinsic or extrinsic diameter among all van Kampen diagrams for the same boundary words.)

We will need to consider coarse distances throughout the Cayley complex \(X\). To that end, define the functions \(\mu^i, \mu^e : \mathbb{N}[\frac{1}{q}] \to \mathbb{N}[\frac{1}{q}]\) by

\[
\mu^i(n) := \max\{k^i_X([n] + 1, n + 1, k^i_r([n] + \zeta + 1))\} \\
\mu^e(n) := \max\{k^e_X([n] + 1, n + 1, k^e_r([n] + \zeta + 1))\},
\]

where \(\zeta\) is the length of the longest relator in the stacking presentation \(P\). It follows directly from the definitions that \(k^i_X, k^e_X, k^i_r, k^e_r\) are nondecreasing functions, and therefore so are \(\mu^i\) and \(\mu^e\).

Theorem 4.2. If \(G\) is a stackable group, then \(G\) admits an intrinsic tame filling inequality for the finite-valued function \(\mu^i\), and an extrinsic tame filling inequality for the finite-valued function \(\mu^e\).

Proof. Let \(\mathcal{F} = \{(\Delta_w, \Psi_w)\}\) be the combed filling obtained via the seashell method from the recursive combed normal filling \((N, E)\) associated to a stacking \((N, c)\) for \(G\). As usual, we write \(N = \{y_g \mid g \in G\}\). Let \(\Delta_w\) be any of the van Kampen diagrams in \(\mathcal{F}\), let \(p\) be any point in \(\partial \Delta_w\), and let \(0 < s < t \leq 1\). To simplify notation later, we also let \(\sigma := \Psi_w(p, s)\) and \(\tau := \Psi_w(p, t)\).

If \(\tau\) is in the 1-skeleton \(\Delta^1_w\), then let \(\tau' := \tau\) and \(t' := t\). Otherwise, \(\tau\) is in the interior of a 2-cell, and there is a \(t \leq t' \leq 1\) such that \(\Psi_w(p, [t, t'])\) is contained in that open 2-cell, and \(\tau' := \Psi_w(p, t') \in \Delta^1_w\).

Case I. \(\tau' \in \Delta^0_w\) is a vertex. In this case the path \(\Psi_w(p, \cdot) : [0, t'] \to X\) follows the edge path labeled \(y_{\pi_{\Delta_w}(\tau')}\) from *, through \(\sigma\), to \(\tau = \tau'\) (at constant speed). There is a vertex \(\sigma'\) on this path lying on the same edge as \(\sigma\) (with \(\sigma' = \sigma\) if \(\sigma\) is a vertex) satisfying \(d_{\Delta_w}(\ast, \sigma) < d_{\Delta_w}(\ast, \sigma') + 1\) and \(d_{X}(\epsilon, \pi_{\Delta_w}(\sigma)) < d_{X}(\epsilon, \pi_{\Delta_w}(\sigma')) + 1\). The subpath from \(\ast\) to \(\sigma'\) is labeled by a prefix \(x\) of the word \(y_{\pi_{\Delta_w}(\tau')}\). Then

\[
d_{\Delta_w}(\ast, \sigma) < d_{\Delta_w}(\ast, \sigma') + 1 \leq l(y_{\pi_{\Delta_w}(\tau)}) + 1 \leq k^i_X(d_{X}(\epsilon, \pi_{\Delta_w}(\tau))) + 1 \leq k^i_X(d_{\Delta_w}(\ast, \tau)) + 1 \\
\text{and} \quad d_{X}(\epsilon, \pi_{\Delta_w}(\sigma)) < d_{X}(\epsilon, \pi_{\Delta_w}(\sigma')) + 1 \leq k^e_X(d_{X}(\epsilon, \pi_{\Delta_w}(\tau))) + 1.
\]

Case II. \(\tau'\) is in the interior of an edge \(\hat{e}\) of \(\Delta_w\). From the seashell construction, the path \(\Psi_w(p, \cdot) : [0, 1] \to \Delta_w\) lies in a subdiagram \(\Delta'\) of \(\Delta_w\) such that \(\Delta'\) is a normal form diagram in \(E\). From the construction of the recursive combed normal filling, the subpath
\[\Psi_w(p, \cdot) : [0, t'] \to \Delta_w \] lies in a subdiagram \(\Delta_e \) of \(\Delta' \) for some pair \((\Delta_e, \Theta_e) \in \mathcal{E}\) associated to a directed edge \(e \in \tilde{E}_d \cup \tilde{E}_r \). Moreover, \(\hat{e} \) is the edge of \(\Delta_e \) corresponding to \(e \), and the path \(\Psi_w(p, \cdot) : [0, t'] \to \Delta_w \) is a bijective (orientation preserving) reparametrization of the path \(\Theta_e(\tau', \cdot) : [0, 1] \to \Delta_e \).

Case IIA. \(e \in \tilde{E}_d \). The van Kampen diagram \(\Delta_e \) contains no 2-cells, and the path \(\Theta_e(\tau', \cdot) : [0, 1] \to \Delta_e \) follows the edge path labeled by a normal form \(y_g \in \mathcal{N} \) from \(* \) to \(\hat{g} \) (at constant speed), and then follows the portion of \(\hat{e} \) from \(\hat{g} \) to \(\tau' \), where \(\hat{g} \) is the endpoint of \(\hat{e} \) closest to \(* \) in the diagram \(\Delta_e \). In this case, \(\tau \) must also lie in \(\Delta^1_w \), and so again we have \(\tau = \tau' \). Since \(\hat{g} \) and \(\tau \) lie in the same closed 1-cell, we have \(d_{\Delta_w}(\ast, \hat{g}) < \lceil d_{\Delta_w}(\ast, \tau) \rceil + 1 \), and similarly for their images (via \(\pi_{\Delta_w} \)) lying in the same closed edge of \(X \).

If \(\sigma \) lies in the \(y_g \) path, then Case I applies to that path, with \(\tau \) replaced by the vertex \(\hat{g} \). Combining this with the inequality above and applying the nondecreasing property of the functions \(k^l_X \) and \(k^r_X \) yields

\[
\tilde{d}_{\Delta_w}(\ast, \sigma) < k^l_X(d_{\Delta_w}(\ast, \hat{g})) + 1 \leq k^l_X(\lceil \tilde{d}_{\Delta_w}(\ast, \tau) \rceil + 1) + 1 \text{ and}
\tilde{d}_X(\epsilon, \pi_{\Delta_w}(\sigma)) < k^r_X(d_{\Delta_w}(\epsilon, \hat{g})) + 1 \leq k^r_X(\lceil \tilde{d}_X(\epsilon, \pi_{\Delta_w}(\tau)) \rceil + 1) + 1.
\]

On the other hand, if \(\sigma \) lies in \(\hat{e} \), then \(\sigma \) and \(\tau \) are contained in a common edge. Hence

\[
\tilde{d}_{\Delta_w}(\ast, \sigma) \leq \tilde{d}_{\Delta_w}(\ast, \tau) + 1 \text{ and } \tilde{d}_X(\epsilon, \pi_{\Delta_w}(\sigma)) \leq \tilde{d}_X(\epsilon, \pi_{\Delta_w}(\tau)) + 1.
\]

Case IIB. \(e \in \tilde{E}_r \). In this case either \(\tau = \tau' \), or \(\tau \) is in the interior of the cell \(f_e \) of the diagram \(\Delta_e \). Let \(g \) be the initial vertex of the directed edge \(e \). Then \(g \) and \(\pi_{\Delta_w}(\tau) \) lie in a common edge or 2-cell of \(X \), and so \(d_X(\epsilon, g) < \lceil \tilde{d}_X(\epsilon, \pi_{\Delta_w}(\tau)) \rceil + 1 \), where \(\zeta \) is the length of the longest relator in the presentation of \(G \).

Note that distances in the subdiagram \(\Delta_e \) are bounded below by distances in \(\Delta_w \). In this case, combining these inequalities and the nondecreasing properties of \(k^l_r \) and \(k^r_r \) yields

\[
\tilde{d}_{\Delta_w}(\ast, \sigma) \leq \tilde{d}_{\Delta_w}(\ast, \tau) \leq \text{idiam}(\Delta_e) \leq k^l_r(d_{\Delta_w}(\epsilon, g)) \leq k^l_r(\lceil d_{\Delta_w}(\ast, \tau) \rceil + 1) + 1 \text{ and}
\tilde{d}_X(\epsilon, \pi_{\Delta_w}(\sigma)) \leq \text{ediam}(\Delta_e) \leq k^r_r(d_{\Delta_w}(\epsilon, g)) \leq k^r_r(\lceil \tilde{d}_X(\ast, \pi_{\Delta_w}(\tau)) \rceil + 1).
\]

Therefore in all cases, we have \(\tilde{d}_{\Delta_w}(\ast, \sigma) \leq \mu^l(\tilde{d}_{\Delta_w}(\ast, \tau)) \) and \(\tilde{d}_X(\epsilon, \pi_{\Delta_w}(\sigma)) \leq \mu^r(\tilde{d}_X(\epsilon, \pi_{\Delta_w}(\tau))) \), as required. \(\square \)

The tame filling inequality bounds in Theorem 4.2 are not sharp in general. In particular, we will improve upon these bounds for the example of almost convex groups in Section 5.5.

Recall from Section 1.3 that the group \(G \) is algorithmically stackable if there is a stacking \((\mathcal{N}, c)\) over a finite generating set \(A \) of \(G \) for which the subset

\[S_{\epsilon} = \{(w, a, x) \mid w \in A^*, a \in A, x = c'(e_{w,a})\} \]

of \(A^* \times A \times A^* \) is computable, where \(e_{w,a} \) denotes the directed edge in \(X \) labeled \(a \) from \(w \) to \(wa \), and \(c'(e_{w,a}) = c(e_{w,a}) \) for \(e_{w,a} \in \tilde{E}_r \) and \(c'(e_{w,a}) = a \) for \(e_{w,a} \in \tilde{E}_d \). For algorithmically
stackable groups, the procedure described above for building a recursive combed normal filling from the stacking is again algorithmic.

Note that whenever the group G admits a tame filling inequality for a function $f : \mathbb{N}[\frac{1}{4}] \to \mathbb{N}[\frac{1}{4}]$, and $g : \mathbb{N}[\frac{1}{4}] \to \mathbb{N}[\frac{1}{4}]$ satisfies the property that $f(n) \leq g(n)$ for all $n \in \mathbb{N}[\frac{1}{4}]$, then G also admits the same type of tame filling inequality for the function g. Applying this, we obtain a computable bound on tame filling inequalities for algorithmically stackable groups.

Theorem 4.3. If G is an algorithmically stackable group, then G satisfies both intrinsic and extrinsic tame filling inequalities with respect to a recursive function.

Proof. From Theorem 4.2, it suffices to show that the functions k^l_N, k^c_N, k^l_r, and k^c_r are bounded above by recursive functions.

We can write the functions

$$
k^l_N(n) = \max\{l(y) \mid y \in N_n\} \quad \text{and} \quad k^c_N(n) = \max\{d_X(e, x) \mid x \in P_n\}
$$

where $N_n := \{ y_g \in N \mid g \in G \text{ and } d_X(e, g) \leq n \}$ and P_n is the set of prefixes of words in N_n. Now for any prefix x of a word $y \in N_n$, we have $l(x) \leq l(y)$, and so we can also write

$$
k^l_N(n) = \max\{l(x) \mid x \in P_n\}.
$$

Since distance in a van Kampen diagram Δ always gives an upper bound for distance, via the map π_Δ, in the Cayley complex X, then for all $n \in \mathbb{N}$, we have $k^c_N(n) \leq k^l_N(n)$. Moreover, $\text{idiam}(\Delta)$ must always be an upper bound for $\text{ediam}(\Delta)$, and so $k^c_r(n) \leq k^l_r(n)$ for all n. Thus it suffices to find recursive upper bounds for k^l_N and k^l_r.

For each word w over A, a stacking reduction algorithm for computing the associated word y_w in N was given in Section 1.3. The set of words N_n is also the set $N_n = \{ u \in \cup_{i=0}^n A^i \}$ of normal forms for words of length up to n. By enumerating the finite set of words of length at most n, computing their normal forms in N with the reduction algorithm, and taking the maximum word length that occurs, we obtain $k^l_N(n)$. Hence the function k^l_N is computable.

Given $w \in A^*$ and $a \in A$, we compute the two words y_{wa} and y_{waa} and store them in a set L_e. Next we follow the definition of the normal form diagram Δ_e for the edge $e = e_{w,a}$ in the recursive construction of the normal filling from Section 1.3. If $(w, a, a) \in S_c$, then $e \in \tilde{E}_d$ and we add no other words to L_e. On the other hand, if $(w, a, a) \notin S_c$, then $e \in \tilde{E}_r$.

In the latter case, by enumerating the finitely many words $x \in c(\tilde{E}_r)$, and checking whether or not (w, a, x) lies in the computable set S_c, we can compute the word $c(e) = x$. Write $x = a_1 \cdots a_n$ with each $a_i \in A$. For $1 \leq i \leq n$, we compute the normal forms y_i in N for the words $wa_1 \cdots a_i$, and add these words to the set L_e. For each pair (y_{i-1}, a_i), we determine the word x_i such that $(y_{i-1}, a_i, x_i) \in S_c$. If $x_i \neq a_i$, we write $x_i = b_1 \cdots b_m$ with each $b_j \in A$, and add the normal forms for the words $y_{i-1}b_1 \cdots b_j$ to L_e for each j. Repeating this process through all of the steps in the construction of Δ_e, we must, after finitely many steps, have no more words to add to L_e. The set L_e now contains the normal form $y_{\pi_\Delta(e)}(v)$ for each vertex v of the diagram Δ_e. Calculate $k(w, a) := \max\{l(y) \mid y \in L_e\}$.
Now as in Remark 1.11, for each vertex \(v \) of the normal form diagram \(\Delta_e \) there is a path in \(\Delta_e \) from the basepoint to \(v \) labeled by a word in the set \(L_e \). Then \(idiam(\Delta_e) \leq k(w, a) \), and we have an algorithm to compute \(k(w, a) \).

Now we can write \(k^\prime_k(n) \leq k^\prime_k(n) \) for all \(n \in \mathbb{N} \), where

\[
k^\prime_k(n) := \max\{k(w, a) \mid w \in \bigcup_{i=0}^n A^i, a \in A\}.
\]

Repeating the computation of \(k(w, a) \) above for all words \(w \) of length at most \(n \) and all \(a \in A \), we can compute this upper bound \(k^\prime_k \) for \(k^\prime_k \), as required.

Remark 4.4. Although the proof of Theorem 4.3 shows in the abstract that an algorithm must exist to compute \(k^\prime_k(n) \), this proof does not give a method to find this algorithm starting from the computable set \(S_c \). In particular, although every finite set is recursively enumerable, it is not clear how to enumerate the finite set \(c(\vec{E}_r) \). In practice, however, for every example we will discuss, we start with both a finite presentation \(\langle A \mid R \rangle \) for the group \(G \) and a stacking that (re)produces that presentation. In that case, the set \(c(\vec{E}_r) \) must be contained in the finite set \(R' := \{x \in A^* \mid \exists a \in A \text{ with } xa \in R\} \). Then we can replace the enumeration of \(c(\vec{E}_r) \) with an enumeration of \(R' \), which can be computed from \(R \).

5. Examples of stackable groups, and their tame filling inequalities

5.1. Groups admitting complete rewriting systems.

Recall that a finite complete rewriting system (finite CRS) for a group \(G \) consists of a finite set \(A \) and a finite set of rules \(R \subseteq A^* \times A^* \) (with each \((u, v) \in R \) written \(u \rightarrow v \)) such that as a monoid, \(G \) is presented by \(G = \text{Mon}(A \mid u = v \text{ whenever } u \rightarrow v \in R) \), and the rewritings \(xuy \rightarrow xvy \) for all \(x, y \in A^* \) and \(u \rightarrow v \) in \(R \) satisfy:

- **Normal forms:** Each \(g \in G \) is represented by exactly one irreducible word (i.e. word that cannot be rewritten) over \(A \).
- **Termination:** The (strict) partial ordering \(x > y \) if \(x \rightarrow x_1 \rightarrow \ldots \rightarrow x_n \rightarrow y \) is well-founded. (\(\exists \) infinite chain \(w \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots \)).

Given any finite CRS \((A, R) \) for \(G \), there is another finite CRS \((A, R') \) for \(G \) with the same set of irreducible words such that the CRS is minimal. That is, for each \(u \rightarrow v \) in \(R' \), the word \(v \) and all proper subwords of the word \(u \) are irreducible (see, for example, [19, p. 56]). Let \(A' \) be the closure of \(A \) under inversion. For each letter \(a \in A' \setminus A \), there is an irreducible word \(z_a \in A^* \) with \(a =_G z_a \). Let \(R'' := R' \cup \{a \rightarrow z_a \mid a \in A' \setminus A\} \). Then \((A', R'') \) is also a minimal finite CRS for \(G \), again with the same set of irreducible normal forms as the original CRS \((A, R) \). For the remainder of this paper, we will assume that all of our complete rewriting systems are minimal and have an inverse-closed alphabet.

For any complete rewriting system \((A, R) \), there is a natural associated symmetrized group presentation \(\langle A \mid R' \rangle \), where \(R' \) is the closure of the relator set \(\{uv^{-1} \mid u \rightarrow v \in R\} \cup \{aa^{-1} \mid a \in A'\} \) under free reduction (except the empty word), inversion, and cyclic conjugation.

Given any word \(w \in A^* \), we write \(w \rightarrow* w' \) if there is any sequence of rewritings \(w = w_0 \rightarrow w_1 \rightarrow \cdots \rightarrow w_n = w' \) (including the possibility that \(n = 0 \) and \(w' = w \)). A
prefix rewriting of w with respect to the complete rewriting system (A, R) is a sequence of
rewritings $w = w_0 \to \cdots \to w_n = w'$, written $w \xrightarrow{p_n} w'$, such that at each w_i, the shortest
possible reducible prefix is rewritten to obtain w_{i+1}. When w_n is irreducible, the number n
is the prefix rewriting length of w, denoted $\text{prl}(w)$.

In [13] Hermiller and Meier constructed a diagrammatic 1-combing associated to a finite
complete rewriting system. In Theorem 5.1, we use the analog of their construction to build
a stacking from a finite CRS (whose 1-combing built from the recursive combed normal filling
is the one defined in [13]).

Theorem 5.1. If the group G admits a finite complete rewriting system, then G is regularly
stackable.

Proof. Let $\mathcal{N} = \{ y_g \mid g \in G \}$ be the set of irreducible words from a minimal finite CRS
(A, R) for G, where A is inverse-closed. Then $\mathcal{N} = A^* \setminus \bigcup_{a \in A} A^* a A^*$ is a regular language.
Let Γ be the Cayley graph for the pair (G, A). Note that prefixes of irreducible words are
also irreducible, and so \mathcal{N} is a prefix-closed set of normal forms for G over A.

As usual, whenever e is a directed edge in Γ with label a and initial vertex g, then e lies
in the set \tilde{E}_d of degenerate edges if and only if $y_g a y_{g^{-1}}$ freely reduces to the empty word,
and otherwise $e \in \tilde{E}_r$.

Given a directed edge $e \in \tilde{E}_r$ with initial vertex g and label a, the word $y_g a$ is reducible
(since this edge is not in \tilde{E}_d). Since y_g is irreducible, the shortest reducible prefix of $y_g a$
is the entire word. Minimality of the rewriting system R implies that there is a unique
factorization $y_g = w u$ such that $u a$ is the left hand side of a unique rule $u a \to v$ in R; that
is, $y_g a \to w v$ is a prefix rewriting. Define $c(e) := \tilde{u}^{-1} v$.

Property (S1) of the definition of stacking is immediate. To check property (S2), we first
let p be the path in Γ that starts at g and follows the word $c(e)$. Since the word \tilde{u} is a suffix
x_g of the normal form y_g, then the edges in the path p that correspond to the letters in \tilde{u}^{-1}
all lie in the set \tilde{E}_d of degenerate edges. Hence we can choose $\tilde{c}_e = v$. For each directed
dge e' in the subpath of p labeled by v, either e' also lies in \tilde{E}_d, or else $e' \in \tilde{E}_r$, and there is
a factorization $v = v_1 a' v_2$ so that e' is the directed edge along p corresponding to the label
$a' \in A$. In the latter case, if we denote the initial vertex of e' by g', then the prefix rewriting
sequence from $y_{g'} a' v_2$ to its irreducible form is a (proper) subsequence of the prefix rewriting
of $y_g a$. That is, if we define a function $\text{prl} : \tilde{E}_r \to \mathbb{N}$ by $\text{prl}(e) := \text{prl}(y_g a)$ whenever e
is an edge with initial vertex g and label a, we have $\text{prl}(e') < \text{prl}(e)$. Hence the ordering
$c(e')$ corresponding to our function $c : \tilde{E}_r \to A^*$ satisfies the property that $e' < c e$ implies
$\text{prl}(e') < \text{prl}(e)$, and the well-ordering property on \mathbb{N} implies that $< c$ is a well-founded strict
partial ordering. Thus (S2) holds as well.

The image set $c(\tilde{E}_r)$ is the set of words $c(\tilde{E}_r) = \{ \tilde{u}^{-1} v \mid \exists a \in A \text{ with } \tilde{u} a \to v \text{ in } R \}$.
Thus Property (S3) follows from finiteness of the set R of rules in the rewriting system.
We now have a tuple (\mathcal{N}, c) of data satisfying properties (S1-S3) of Definition 1.2, i.e.,
a stacking. The stacking presentation in this case is the symmetrized presentation associated
to the rewriting system.
To determine whether a tuple \((w, a, x)\) lies in the associated set \(S_e\), we begin by computing the normal forms \(y_w\) and \(y_{wa}\) from \(w\) and \(wa\), using the rewriting rules of our finite system. Then \((w, a, x) \in S_e\) if and only if either at least one of the words \(y_wa\) and \(y_{wa}a^{-1}\) is irreducible and \(a = x\), or else both of the words \(y_wa\) and \(y_{wa}a^{-1}\) are reducible and there exist both a factorization \(y_w = z\tilde{u}\) for some \(z \in A^*\) and a rule \(\tilde{u}a \rightarrow v\) in \(R\) such that \(x = \tilde{u}^{-1}v\). Since there are only finite many rules in \(R\) to check for such a decomposition of \(y_w\), it follows that the set \(S_e\) is also computable, and so this stacking is algorithmic. \(\square\)

Theorem 4.3 now shows that any group with a finite complete rewriting system admits intrinsic and extrinsic tame filling inequalities with respect to a recursive function. By relaxing the bounds on tame filling inequalities further, we can write bounds on filling inequalities in terms of another important function in the study of rewriting systems.

Definition 5.2. The string growth complexity function \(\gamma : \mathbb{N} \rightarrow \mathbb{N}\) associated to a finite complete rewriting system \((A, R)\) is defined by

\[
\gamma(n) := \max\{l(x) \mid \exists w \in A^* \text{ with } l(w) \leq n \text{ and } w \rightarrow^*_n x\}
\]

This function \(\gamma\) is an upper bound for the intrinsic (and hence also extrinsic) diameter function of the group \(G\) presented by the rewriting system. In the following, we show that \(G\) also satisfies tame filling inequalities with respect to a function Lipschitz equivalent to \(\gamma\).

Corollary 5.3. Let \(G\) be a group with a finite complete rewriting system. Let \(\gamma\) be the string growth complexity function for the associated minimal system and let \(\zeta\) denote the length of the longest rewriting rule for this system. Then \(G\) satisfies both intrinsic and extrinsic tame filling inequalities for the recursive function \(n \mapsto \gamma(\lceil n \rceil + \zeta + 2) + 1\).

Proof. Let \((A, R)\) be a minimal finite complete rewriting system for \(G\) such that \(A\) is inverse-closed. Let \((N, c)\) be the stacking for \(G\) constructed in the proof of Theorem 5.1, and let \(X\) be the Cayley complex of the stacking presentation \(P\). Let \(\mathcal{E} = \{\Delta_e, \Theta_e \mid e \in E(X)\}\) be the associated recursive combed normal filling (where we note that the choice of subword \(\tilde{c}_e\) of \(c(e)\) for each \(e \in \tilde{E}_r\), used in the construction of \(\Theta_e\), is given in the proof of Theorem 5.1). For the rest of this proof, we rely heavily on the result and notation developed in the proof of Theorem 4.3 to obtain the tameness bounds for these edge homotopies.

From that proof, we have \(k_N^e(n) \leq k_N^i(n) = \max\{l(y) \mid y \in N_n\}\) for all \(n\), where \(N_n\) is the set of irreducible normal forms obtained by rewriting words over \(A\) of length at most \(n\). Therefore \(k_N^c(n) \leq k_N^i(n) \leq \gamma(n)\).

Also from that earlier proof, we have \(k_P^c(n) \leq k_P^i(n) \leq k_P^f(n)\) for all \(n \in \mathbb{N}\). Suppose that \(w \in A^*\) is a word of length at most \(n\), \(a \in A\), and \(e = c_{w, a}\) is the directed edge in \(X\) from \(w\) to \(wa\) labeled by \(a\). In this case we analyze the van Kampen diagram \(\Delta_e\) more carefully. This diagram is built by successively applying prefix rewritings to the word \(y_wa\) and/or by applying free reductions (which must also result from prefix rewritings). Hence for every vertex \(v\) in the diagram \(\Delta_e\), there is a path from the basepoint \(*\) to \(v\) labeled by an irreducible prefix \(y\) of a word \(x \in A^*\) such that \(y_wa \rightarrow^*_x\), and this word \(y\) is the element of the set \(L_e\) corresponding to the vertex \(v\). Then the maximum \(k(w, a)\) of the lengths of
the elements of L_e is bounded above by $\max\{l(y) \mid y$ is a prefix of x and $y_w a \xrightarrow{p} x\}$. Since
the length of a prefix of a word x is at most $l(x)$, we have $k(w, a) \leq \max\{l(x) \mid y_w a \xrightarrow{p} x\}$.

Plugging this into the formula for k'_p, we obtain
\[
k'_p(n) = \max\{k(w, a) \mid w \in \bigcup_{i=0}^{n} A^i, a \in A, e_{w,a} \in \bar{E}_v\}
\leq \max\{l(x) \mid \exists w \in \bigcup_{i=0}^{n} A^i, a \in A, y_w a \xrightarrow{p} x\}.
\]
Now for each word w of length at most n and each $a \in A$, we have $w a \xrightarrow{p} y_w a$, and so
$k'_p(n) \leq \max\{l(x) \mid \exists w \in \bigcup_{i=0}^{n} A^i, a \in A$ with $w a \xrightarrow{p} x\} \leq \gamma(n + 1)$.

Putting these inequalities together, we obtain $\mu^\ell(n) \leq \mu^i(n)$ and
\[
\mu^i(n) = \max\{k^i_N([n] + 1) + 1, n + 1, k^i([n] + \zeta + 1)\}
\leq \gamma([n] + \zeta + 2) + 1.
\]

Remark 5.4. We note that every instance of rewriting in the proofs in this Section was a prefix rewriting, and so G also satisfies tame filling inequalities with γ replaced by the potentially smaller **prefix rewriting string growth complexity** function $\gamma_p(n) = \max\{l(x) \mid \exists w \in A^* \text{ with } l(w) \leq n$ and $w \xrightarrow{p} x\} \leq \gamma(n)$.

5.2. Thompson’s group F.

Thompson’s group
\[F = \langle x_0, x_1 \mid [x_0 x_1^{-1}, x_0^{-1} x_1 x_0], [x_0 x_1^{-1}, x_0^{-2} x_1 x_0^2]\rangle\]
is the group of orientation-preserving piecewise linear homeomorphisms of the unit interval $[0,1]$, satisfying that each linear piece has a slope of the form 2^i for some $i \in \mathbb{Z}$, and all breakpoints occur in the 2-adics. In [6], Cleary, Hermiller, Stein, and Taback show that Thompson’s group with the generating set $A = \{x_0^\pm, x_1^\pm\}$ is stackable, with stacking presentation given by the symmetrization of the presentation above. Moreover, in [6, Definition 4.3] they give an algorithm for computing the stacking map, which can be shown to yield an algorithmic stacking for F.

Although we will not repeat their proof here, we describe the normal form set N associated to the stacking constructed for Thompson’s group in [6] in order to discuss its formal language theoretic properties. Given a word w over the generating set $A = \{x_0^\pm, x_1^\pm\}$, denote the number of occurrences in w of the letter x_0 minus the number of occurrences in w of the letter x_0^{-1} by $expsum_{x_0}(w)$; that is, the exponent sum for x_0. The authors of that paper show ([6, Observation 3.6(1)]) that the set
\[N := \{w \in A^* \mid \forall \eta \in \{\pm 1\}, \text{ the words } x_0^\eta x_0^{-\eta}, x_1^\eta x_1^{-\eta}, \text{ and } x_0^2 x_1^\eta \text{ are not subwords of } w, \]
\[\forall \text{ prefixes } w' \text{ of } w, \text{expsum}_{x_0}(w') \leq 0\},
\]
is a set of normal forms for F. Moreover, each of these words labels a $(6,0)$-quasi-geodesic path in the Cayley complex X [6, Theorem 3.7].

This set N is the intersection of the regular language $A^* \setminus \bigcup_{u \in U} A^* u A^*$, where $U := \{x_0 x_0^{-1}, x_0^{-1} x_0, x_1 x_1^{-1}, x_1^{-1} x_1, x_0^2 x_1, x_0 x_1^2\}$, with the language $L := \{w \in A^* \mid \forall \text{ prefixes } w' \text{ of } w, \text{expsum}_{x_0}(w') \leq 0\}$. We refer the reader to the text of Hopcroft and Ullman [15]
for definitions and results on context-free and regular languages we now use to analyze the
set L. The language L can be recognized by a deterministic push-down automaton (PDA)
which pushes an x_{0}^{-1} onto its stack whenever an x_{0}^{-1} is read, and pops an x_{0}^{-1} off of its
stack whenever an x_{0} is read. When x_{1}^{-1} is read, the PDA does nothing to the stack,
and does not change its state. The PDA remains in its initial state unless an x_{0} is read
when the only symbol on the stack is the stack start symbol Z_{0}, in which case the PDA
transitions to a fail state (at which it must then remain upon reading the remainder of the
input word). Ultimately the PDA accepts a word whenever its final state is its initial state.
Consequently, L is a deterministic context-free language. Since the intersection of a regular
language with a deterministic context-free language is deterministic context-free, the set N
is also a deterministic context-free language.

The authors of [6] construct the stacking of F as a stepping stone to showing that
F with this presentation also admits a radial tame combing inequality with respect to a
linear function. We note that although the definition of diagrammatic 1-combing is not
included in that paper, and the coarse distance definition differs slightly, the constructions
of 1-combings in the proofs are diagrammatic and admit Lipschitz equivalent radial tame
combing inequality functions. Hence by Corollary 3.4, this group satisfies a linear extrinsic
tame filling inequality.

Let E be the recursive combed normal filling associated to the stacking in [6], and let
$D = \{(\Delta_{w}, \Phi_{w}) \mid w \in A^{*}, w =_{F} \epsilon\}$ be the combed filling induced by E by the seashell
procedure. As noted above, the van Kampen homotopies in the collection D are extrinsically
f-tame for a linear function f. A consequence of Remark 1.11 and the seashell construction
is that for each word $w \in A^{*}$ with $w =_{F} \epsilon$ and for each vertex v in Δ_{w}, there is a path in
Δ_{w} from the basepoint $*$ to the vertex v labeled by the $(6,0)$-quasi-geodesic normal form in
N representing $\pi_{\Delta_{w}}(v)$. Then we have $d_{\Delta_{w}}(*, v) \leq 6d_X(\epsilon, \pi_{\Delta_{w}}(v))$. Let $\tilde{j} : N[\frac{1}{2}] \to N[\frac{1}{2}]$ be the (linear) function defined by $\tilde{j}(n) = 6[\frac{n}{n}] + 1$. Lemma 2.2 then shows that Thompson’s
group F also satisfies a linear intrinsic tame filling inequality, for the linear function $\tilde{j} \circ f$.

On the other hand, we note that Cleary and Taback [7] have shown that Thompson’s
group F is not almost convex (in fact, Belk and Bux [1] have shown that F is not even
minimally almost convex). Combining this with Theorem 5.6 below, Thompson’s group F
cannot satisfy an intrinsic or extrinsic tame filling inequality for the identity function.

5.3. Iterated Baumslag-Solitar groups.

The iterated Baumslag-Solitar group

$$G_k = \langle a_0, a_1, ..., a_k \mid a_i a_{i+1} = a_{i+1}^2; 0 \leq i \leq k - 1 \rangle$$

admits a finite complete rewriting system for each $k \geq 1$ (first described by Gersten; see
[12] for details), and so Theorem 5.1 shows that G_k is regularly stackable.
Gersten [10, Section 6] showed that G_k has an isoperimetric function that grows at least as fast as a tower of exponentials

$$E_k(n) := 2^{2^n}.$$

It follows from his proof that the (minimal) extrinsic diameter function for this group is at least $O(E_{k-1}(n))$. Hence this is also a lower bound for the (minimal) intrinsic diameter function for this group. Then, by Proposition 2.1, G_k cannot satisfy an intrinsic or extrinsic tame filling inequality for the function E_{k-2}. (In the extrinsic case, this was shown in the context of tame combings in [12].) Combining this with Corollary 5.3, for $k \geq 2$ the group G_k is an example of a regularly stackable group which admits intrinsic and extrinsic recursive tame filling inequalities but which cannot satisfy a tame filling inequality for E_{k-2}.

5.4. Solvable Baumslag-Solitar groups.

The solvable Baumslag-Solitar groups are presented by $G = BS(1, p) = \langle a, t \mid tat^{-1} = a^p \rangle$ with $p \in \mathbb{Z}$. In [6] Cleary, Hermiller, Stein, and Taback show that for $p \geq 3$, the groups $BS(1, p)$ admit a linear radial tame combing inequality, and hence (from Corollary 3.4) a linear extrinsic tame filling inequality.

We note that the combed filling in their proof is induced by the recursive combed normal filling associated to a regular stacking, which we describe here in order to obtain an intrinsic tame filling inequality for these groups. The set of normal forms over the generating set $A = \{a, a^{-1}, t, t^{-1}\}$ is

$$N := \{t^{-i}a^mt^k \mid i, k \in \mathbb{N} \cup \{0\}, m \in \mathbb{Z}, \text{ and either } p \nmid m \text{ or } 0 \in \{i, k\}\}.$$

The recursive edges in $\tilde{E}_r = \tilde{E}(X) \setminus \tilde{E}_d$ are the directed edges of the form $e_{w,b}$ with initial point w and label $b \in A$ satisfying one of the following:

1. $w = t^{-i}a^m$ and $b = t^\nu$ with $m \neq 0$, $\nu \in \{\pm 1\}$, and $-i + \nu \leq 0$, or
2. $w = t^{-i}a^m t^k$ and $b = a^\nu$ with $k > 0$ and $\nu \in \{\pm 1\}$.

In case (1), we define $c(e_{t^{-i}a^m,t^\nu}) := (a^{-\nu}ta^\nu)^m$, where $\nu := \frac{m}{|m|}$ is 1 if $m > 0$ and -1 if $m < 0$. In case (2) we define $c(e_{t^{-i}a^m t^k,a^\nu}) := t^{-1}a^{\nu}t$. A portion of the Cayley graph and the stacking map in the case that $p = 2$ are illustrated in Figure 10; here thickened edges are degenerate, and the images $c(e)$ for two recursive (dashed) edges e are shown with widely dashed paths. The arrows within the 2-cells indicate the direction of the flow through the Cayley complex toward the basepoint given by this stacking.

Properties (S1) and (S3) of the definition of stacking follow directly. To show that the pair stacking map c also satisfies property (S2), we first briefly describe the Cayley complex X for the finite presentation above; see for example [8, Section 7.4] for more details. The Cayley complex X is homeomorphic to the product $\mathbb{R} \times T$ of the real line with a regular tree T, and there are projections $\Pi_\mathbb{R} : X \to \mathbb{R}$ and $\Pi_T : X \to T$. The projection Π_T takes each edge labeled by an $a^{\pm 1}$ to a vertex of T. Each edge of T is the image of infinitely many t edges of X^1, with consistent orientation, and so we may consider the edges of T to be oriented and labeled by t, as well. For the normal form $y_0 = t^{-i}a^m t^k \in N$ of an
element $g \in G$, the projection onto T of the path in X^1 starting at ϵ and labeled by y_g is the unique geodesic path, labeled by $t^{-1}k$, in the tree T from $\Pi_T(\epsilon)$ to $\Pi_T(g)$. For any directed edge e in \vec{E}_r in case (2) above, there are $p+1$ 2-cells in the Cayley complex X that contain e in their boundary, and the path $c(e)$ starting from the initial vertex of e is the portion of the boundary, disjoint from e, of the only one of those 2-cells σ that satisfies $d_T(\Pi_T(\epsilon), \Pi_T(q)) \leq d_T(\Pi_T(\epsilon), \Pi_T(e))$ for all points $q \in \sigma$, where d_T is the path metric in T. For any edge e' that lies both in this $c(e)$ path and in \vec{E}_r, then e' is again a recursive edge of type (2), and we have $d_T(\Pi_T(\epsilon), \Pi_T(e')) < d_T(\Pi_T(\epsilon), \Pi_T(e))$. Thus the well-ordering on \mathbb{N} applies, to show that there are at most finitely many $e'' \in \vec{E}_r$ with $e'' <_c e$ in case (2).

The other projection map Π_R takes each vertex $t^{-1}a^mt^k$ to the real number $p^{-i}m$, and so takes each edge labeled by $t^{\pm 1}$ to a single real number, and takes each edge labeled $a^{\pm 1}$ to an interval in \mathbb{R}. For an edge $e \in \vec{E}_r$ in case (1) above, there are exactly two 2-cells in X containing e, and the path $c(e)$ starting at the initial vertex $w = t^{-1}a^m$ of e travels around the boundary of the one of these two cells (except for the edge e) whose image, under the projection Π_R, is closest to 0. The only possibly recursive edge e' in this $c(e)$ path must also have type (1), and moreover the initial vertex of e' is $w' = t^{-1}a^{m-n}$ and satisfies $|\Pi_R(w')| = |\Pi_R(w)| - p^{-i}$. Then in case (1) also there are only finitely many recursive edges that are $<_c e$, completing the proof of property (S2).

Therefore the tuple (\mathcal{N}, c) is a stacking, and the symmetrization of the presentation above is the stacking presentation. The diagrammatic 1-combing built from the associated recursive combed normal filling is the 1-combing constructed in [6].

Let $\mathcal{D} = \{(\Delta_w, \Phi_w) \mid w \in A^*, w=_{\mathcal{F}} \epsilon\}$ be the combed filling induced by this recursive combed normal filling via the seashell procedure. From Remark 1.11, we know that for each vertex v of a van Kampen diagram Δ_w in this collection, there is a path in Δ_w from $* \rightarrow v$ labeled by the normal form of the element $\pi_{\Delta_w}(v)$ of $BS(1,p)$. The normal form y_g of $g \in G$ can be obtained from a geodesic representative by applying (the infinite set of) rewriting rules of the form $ta^\eta \rightarrow a^{np}t$ and $a^\eta t^{-1} \rightarrow t^{-1}a^{np}$ for $\eta = \pm 1$ together with

![Figure 10. Stacking map for BS(1,2)](image-url)
$t^{-1}a^mt \to a^n$ for $m \in \mathbb{Z}$ and free reductions. Then $d_{\Delta_w}(*, v) \leq l(y_g) \leq j(d_X(\epsilon, \pi_{\Delta_w}(v))$ for the function $j : \mathbb{N} \to \mathbb{N}$ given by $j(n) = p^n$. Lemma 2.2 and the linear extrinsic tame filling inequality result above now apply, to show that the group $BS(1, p)$ with $p \geq 3$ also satisfies an intrinsic tame filling inequality with respect to a function $\mathbb{N}[\frac{1}{4}] \to \mathbb{N}[\frac{1}{4}]$ that is Lipschitz equivalent to the exponential function $n \mapsto p^n$ with base p.

5.5. Almost convex groups.

One of the original motivations for the definition of a radial tame combing inequality in [12] was to imitate Cannon’s [5] notion of almost convexity in a quasi-isometry invariant property. Let G be a group with an inverse-closed generating set A, and let d_{Γ} be the path metric on the associated Cayley graph Γ. For $n \in \mathbb{N}$, define the sphere $S(n)$ of radius n to be the set of points in Γ a distance exactly n from the vertex labeled by the identity ϵ. Recall that the ball $B(n)$ of radius n is the set of points in Γ whose path metric distance to ϵ is less than or equal to n.

Definition 5.5. A group G is almost convex with respect to the finite symmetric generating set A if there is a constant k such that for all $n \in \mathbb{N}$ and for all g, h in the sphere $S(n)$ satisfying $d_{\Gamma}(g, h) \leq 2$ (in the corresponding Cayley graph), there is a path inside the ball $B(n)$ from g to h of length no more than k.

Cannon [5] showed that every group satisfying an almost convexity condition over a finite generating set is also finitely presented. Thiel [20] showed that almost convexity is a property that depends upon the finite generating set used.

In the proof of Theorem 5.6 (stated in Section 1.1) below, we show that a pair (G, A) that is almost convex is algorithmically stackable and (applying Theorem 7.1) must also lie in the quasi-isometry invariant class of groups admitting linear intrinsic and extrinsic tame filling inequalities. Moreover the class of almost convex groups is exactly the class of geodesically stackable groups, and almost convexity of (G, A) is equivalent to the existence of a finite set R of defining relations for G over A such that the pair $(G, \langle A \mid R \rangle)$ satisfies an intrinsic or extrinsic tame filling inequality with respect to the identity function $\iota : \mathbb{N}[\frac{1}{4}] \to \mathbb{N}[\frac{1}{4}]$ (i.e. $\iota(n) = n$ for all n). In the extrinsic case, equivalence of almost convexity and the existence of a combed normal filling with ι-tame edge homotopies follows closely from the equivalence of almost convexity with a radial tame combing inequality for the identity shown by Hermiller and Meier in [12, Theorem C], together with the proof of Corollary 3.4. We give some details here which include a description of the stacking involved, and a minor correction to the proof in that earlier paper.

Proof of Theorem 5.6. Suppose that the group G has finite symmetric generating set A, and let Γ be the corresponding Cayley graph. The implications (4) \Rightarrow (2) and (3) \Rightarrow (2) are immediate.

(1) implies (4):

Suppose that the group G is almost convex with respect to A, with an almost convexity constant k. Let $\mathcal{N} = \{z_g \mid g \in G\}$ be the set of shortlex normal forms over A for G. Let \widetilde{E}_d
be the corresponding set of directed degenerate edges, and let $\bar{E}_r = E(\Gamma) \setminus \bar{E}_d$ be the set of recursive edges.

Let e be any element of \bar{E}_r and suppose that e is oriented from endpoint g to endpoint h. If $d(\Gamma, (e, g)) = d(\Gamma, (e, h)) = n$, then the points g and h lie in the same sphere. Almost convexity of (G, A) implies that there is a directed edge path in X from g to h of length at most k that lies in the ball $B(n)$. We define $\tilde{c}_e = c(e)$ to be the shortlex least word over A that labels a path in $B(n)$ from g to h. If $d(\Gamma, (e, g)) = n$ and $d(\Gamma, (e, h)) = n + 1$, then we can write $z_h = A^* z_h b$ for some $h' \in G$ and $b \in A$. Hence, $g, h' \in S(n)$ and $d(\Gamma, (g, h')) \leq 2$. Again in this case we define \tilde{c}_e to be the shortlex least word over A that labels a path in X of length at most k inside of the ball $B(n)$ from g to h. The almost convexity property shows that the word $c(e) := \tilde{c}(e) b$ has length at most $k + 1$, this word labels a path from g to h, and $c(e)$ decomposes as the word $\tilde{c}(e)$ followed by a suffix $x_b = b$ of z_h. Similarly, if $d(\Gamma, (e, g)) = n + 1$ and $d(\Gamma, (e, h)) = n$, then $z_g = z_g' b$ for some $b \in A$ and $g' \in G$, and we define \tilde{c}_e to be the shortlex least word labeling a path in $B(n)$ from g' to h. Then $c(e) := b^{-1} \tilde{c}_e$ labels a path from g to h, and decomposes as a prefix b^{-1}, that is the inverse of a suffix $x_g = b$ of z_g, followed by \tilde{c}_e.

In each of these three cases, for any point p in the interior of e, we have $d(\Gamma, (e, p)) = n + \frac{1}{2}$. For any directed edge e' that lies both in \bar{E}_r and in the path of Γ starting at g and labeled by $c(e)$, the edge e' must lie in the subpath labeled by $\tilde{c}(e)$, and hence e' is contained in $B(n)$. Therefore at least one of the endpoints of the edge e' must lie in $B(n - 1)$. That is, for the function $\phi : E(\Gamma) \to \mathbb{N}$ defined by $\phi(w) := \frac{1}{2} (\sum_{y \in \partial(w)} d(\Gamma, (e, y)))$, we have that $e' < c e$ implies $\phi(e') \leq n - \frac{1}{2} < n \leq \phi(e)$ (in the standard well-ordering on \mathbb{N}), as required in Definition 1.9. Thus the relation $< e$ is also a well-founded strict partial ordering. Properties (S1) and (S2) of Definition 1.2 hold for the function c.

The image set $c(\bar{E}_r)$ of this function c is contained in the finite set of all nonempty words over A of length up to $k + 1$ that represent the identity element of G, and so (S3) also holds. We now have that the tuple (N, c) is a geodesic stacking with respect to shortlex normal forms.

(1) implies (3):

Using the geodesic stacking from the proof of (1) ⇒ (4), we are left with showing computability for the set S_e defined by $S_e = \{(w, a, x) \mid c'(e_{w, a}) = x\} \subset A^* \times A \times A^*$ where $e_{w, a}$ denotes the edge in Γ from w to $w a$, and $c'(e_{w, a}) = c(e_{w, a})$ for all $e_{w, a} \in \bar{E}_r$, and $c'(e_{w, a}) = a$ for all $e_{w, a} \in \bar{E}_d$. Suppose that (w, a, x) is any element of $A^* \times A \times A^*$. Cannon [5, Theorem 1.4] has shown that the word problem is solvable for G, and so by enumerating the words in A^* in increasing shortlex order, and checking whether each in turn is equal in G to w, we can find the shortlex normal form z_w for w. Similarly we compute z_{wa}. If the word $z_{wa} a z_{wa}^{-1}$ freely reduces to 1, then the tuple (w, a, x) lies in S_e if and only if $x = a$.

Suppose on the other hand that the word $z_{wa} a z_{wa}^{-1}$ does not freely reduce to 1. If $l(z_{wa}) = l(z_{wa} a z_{wa}^{-1})$ is the natural number n, then we enumerate the elements of the finite set $\bigcup_{i=0}^{n} A^i$ of words of length up to n in increasing shortlex order. For each word $y = a_1 \cdots a_m$ in this enumeration, with each $a_i \in A$, we use the word problem solution again to compute
the word length $l_{y,i}$ of the normal form $z_{w_1 \cdots w_i}$ for each $0 \leq i \leq m$. If each $l_{y,i} \leq n$, and equalities $l_{y,i} = n$ do not hold for two consecutive indices i, then (w,a,y) lies in S_c and we halt the enumeration; otherwise, we go on to check the next word in our enumeration. The tuple (w,a,x) lies in S_c if and only if x is the unique word y that results when this algorithm stops. The cases that $l(z_w) = l(z_{wa}) \pm 1$ are similar.

Combining the algorithms in the previous two paragraphs, we have that the set S_c is computable.

(2) implies (1):

Suppose that the group G is geodesically stackable with respect to the generating set A, and that (\mathcal{N}, c) is the associated stacking. Let $M := \max\{l(c(e)) \mid e \in \vec{E}_r\}$ and let $k := 2M^2 + 2$. Also let g, h be any two points in a sphere $S(n)$ with $d_\Gamma(g,h) \leq 2$.

If $d_\Gamma(g,h) = 1$, then $h = ga$ for some $a \in A$. Moreover, since all normal forms in \mathcal{N} are geodesics, the edge $e_{g,a}$ from g to h must be recursive. Then there is a path p labeled $c(e_{g,a})$ of length $\leq M < k$ from g to h satisfying the property that for every edge e' in this directed path, either $e' \in \vec{E}_d$ or else $e' \in \vec{E}_r$ with $e' <_e e$. Whenever $e' \in \vec{E}_r$, then since the stacking is geodesic we have $\phi(e') < \phi(e_{g,a}) = n$, and so the edge e' must lie in $B(n)$. If needed we replace each subpath of p whose edges all lie in \vec{E}_d by the shortest path in the tree T of degenerate edges between the same endpoints. The effect of this replacement can only shorten the path p, and all edges in the new subpaths must also lie in $B(n)$.

On the other hand, suppose that $d_\Gamma(g,h) = 2$, with $h = gab$ for some $a, b \in A$. If $d_\Gamma(e, ga) = n - 1$, then there is a path of length $2 \leq k$ from g to h lying inside $B(n)$, and if $d_\Gamma(e, ga) = n$, we can apply the previous paragraph twice to obtain a path of length at most $2M < k$ from g to h via ga. Finally consider the case that $d_\Gamma(e, ga) = n + 1$, and write the (geodesic) normal form for ga as $y_{ga} = y_g a'$ where $g' \in S(n)$ and $a' \in A$. It suffices to show that there is a path in $B(n)$ from g to g' of length at most $M^2 < \frac{1}{2}k$, since a similar proof results in such a path from g' to h. If $g = g'$ we are done, so suppose that $g \neq g'$.

Now the unique path from e to ga in Γ that is labeled by a normal form in \mathcal{N} traverses the vertex g', so the edge $e_{g,a}$ from g to ga must be recursive. In this case each recursive edge e' in the directed path p labeled $c(e_{g,a})$ from g to ga satisfies $\phi(e') < \phi(e_{g,a}) = n + \frac{1}{2}$, and so both endpoints of e' lie in $B(n)$. For each recursive edge e' in the path p satisfying $\phi(e') = n$, we replace this edge by the directed path labeled $c(e')$ between the same endpoints. We obtain a new directed path p' of length at most M^2 from g to ga. Now for every recursive edge e'' in the path p', we have $\phi(e'') < n$, and so all of the recursive edges in the path p' lie in $B(n)$.

Next as above we replace each subpath of p' consisting solely of degenerate edges in Γ by the shortest path in the tree T of degenerate edges between the same endpoints, resulting in another path p'' from g to ga all of whose recursive edges lie in $B(n)$. The path p'' must end with a path in the tree T from a point in $B(n)$ to the vertex ga, and therefore the last directed edge of this path is the edge $e_{g',a'}$. Let \bar{p} be the path p'' with this last edge removed. Then \bar{p} is a path from g to g' lying in $B(n)$ of length less than M^2, as required.

(1) implies (6):
Suppose that the group G is almost convex with respect to A, with almost convexity constant k. Let (N, C) be the stacking obtained in the proof of (1) \Rightarrow (4) above, and let X be the Cayley complex for the stacking presentation $\mathcal{P} = \langle A \mid R_c \rangle$, with 1-skeleton $X^1 = \Gamma$. Let $\mathcal{E} = \{ (\Delta_e, \Theta_e) \mid e \in E(X) \}$ be the set of normal form diagrams and edge homotopies from the associated recursive combed normal filling.

Theorem 4.2 can now be applied, but unfortunately this result is insufficient. Although the fact that all of the normal forms in N are geodesic implies that the functions k^i_X and k^i_e are the identity, the tame filling inequality bounds μ^i and μ^e are not. Instead, we follow the steps of the algorithm that built the recursive combed normal filling more carefully.

Let e be any edge of X, again with endpoints g and h, and let $n := \min \{ d_X(e, g), d_X(e, h) \}$; that is, either $g, h \in S(n)$, or one of these points lies in $S(n)$ and the other is in $S(n + 1)$. Let \hat{e} be the edge corresponding to e in the van Kampen diagram Δ_e, and let p be an arbitrary point in \hat{e}.

Case I. Suppose that $e \in \hat{E}_d$. Then Δ_e is a line segment with no 2-cells, and the path $\pi_{\Delta_e} \circ \Theta_e(p, \cdot)$ follows a geodesic in X^1. Hence this path is extrinsically ν-tame.

Case II. Suppose that $e \in \hat{E}(X) \setminus \hat{E}_d$. We prove this case by Noetherian induction. By construction, the paths $\pi_{\Delta_e} \circ \Theta_e(g, \cdot)$ and $\pi_{\Delta_e} \circ \Theta_e(h, \cdot)$ follow the geodesic paths in X starting from e and labeled by the words y_g and y_h at constant speed.

Suppose that p is a point in the interior of \hat{e}. We follow the notation of the recursive construction of Θ_e in Section 4. In that construction, edge homotopies are constructed for directed edges; by slight abuse of notation, let e also denote the directed edge from g to h that yields the element (Δ_e, Θ_e) of \mathcal{E}. Recall that this recursive procedure uses a factorization of the word $c(e)$ as $c(e) = x_g c_e x_h$. In our definition of $c(e)$ above, we defined this factorization so that for each edge e' (no matter whether e' is in \hat{E}_d or \hat{E}_r) in the \hat{c}_e path, we have $f_\Gamma(e') < f_\Gamma(e)$. On the interval $[0, a_p]$, the path $\Theta_e(p, \cdot)$ follows a path $\Theta_1(\Xi_e(p, 0), \cdot)$ in a subdiagram of Δ_e that is either an edge homotopy for an edge e_i of X that lies in this \hat{c}_e subpath, or a line segment labeled by a shortlex normal form. Hence either by induction or case I, the homotopy Θ_1 is extrinsically ν-tame.

On the interval $[a_p, 1]$, the path $\Theta_e(p, \cdot)$ follows the path $\Xi_e(p, \cdot)$ from the point $\Xi_e(p, 0)$ (in the subpath of ∂f_e labeled \hat{c}_e, whose image in X is contained in $B(n)$) through the interior of the 2-cell f_e of Δ_e to the point p. We have $d_X(e, \pi_{\Delta_e}(\Xi_e(p, 0))) \leq n$, $d_X(e, \pi_{\Delta_e}(\Xi_e(p, t))) = n + \frac{1}{2}$ for all $t \in (0, 1)$, and $d_X(e, \pi_{\Delta_e}(\Xi_e(p, 1))) = d_X(e, p) = f_\Gamma(e) = n + \frac{1}{2}$. Hence the path $\Xi_e(p, \cdot)$ is extrinsically ν-tame. Putting these pieces together, we have that Θ_e is also extrinsically ν-tame in Case II.

Thus in the recursive combed normal filling (N, \mathcal{E}), each edge homotopy is extrinsically ν-tame, and hence the same is true for the van Kampen homotopies of the recursive combed filling (N, \mathcal{F}) induced by \mathcal{E}, by Lemma 3.1. Therefore (G, \mathcal{P}) satisfies an extrinsic tame filling inequality with respect to the same function ν.

(1) implies (5): As noted in Remark 1.11, the recursive combed filling constructed above from the almost convexity condition satisfies the property that for every vertex v in a van Kampen diagram Δ of \mathcal{F}, there is a path in Δ from \ast to v labeled by the shortlex normal form for the element $\pi_{\Delta}(v)$ of G. Since these normal forms label geodesics in X, it follows
that intrinsic and extrinsic distances (to the basepoints) in the diagrams Δ of \mathcal{F} are the same. Thus the pair (G, \mathcal{P}) satisfies an intrinsic tame filling inequality with respect to the same function ι.

(5) or (6) implies (1): The proof of this direction in the extrinsic case closely follows the proof of [12, Theorem C], and the proof in the intrinsic case is quite similar. □

Remark 5.7. As in Remark 4.4, Cannon’s word problem algorithm for almost convex groups, which we applied in the proof of Theorem 5.6, requires the use of an enumeration of a finite set of words over A, namely those that represent ϵ in G and have length at most $k + 2$. As Cannon also points out [5, p. 199], although this set is indeed recursive, there may not be an algorithm to find this set, starting from (G, A) and the constant k.

Since every word hyperbolic group is almost convex, and the set of shortlex normal forms (used in the proof of Theorem 5.6 to construct a stacking for any word hyperbolic group) is a regular language, we have shown that every word hyperbolic group is regularly stackable. Combining Theorem 5.1 with a result of Hermiller and Shapiro [14], that the fundamental group of every closed 3-manifold with a uniform geometry other than hyperbolic must have a finite complete rewriting system, shows that these groups are regularly stackable as well.

Hence we obtain the following.

Corollary 5.8. If G is the fundamental group of a closed 3-manifold with a uniform geometry, then G is regularly stackable.

6. **Groups with a fellow traveler property and their tame filling inequalities**

In this section we consider a class of finitely presented groups which admit a rather different procedure for constructing van Kampen diagrams, namely combable groups. The primary goal of this section is to prove Corollary 6.3, that every quasi-geodesically combable group (with respect to normal forms that are simple words) admits linear intrinsic and extrinsic tame filling inequalities. We begin with definitions and a discussion of the structure of van Kampen diagrams for combable groups.

Let G be a group with a finite inverse-closed generating set A such that no element of A represents the identity ϵ of G, let Γ be the Cayley graph of G over A, and let $\mathcal{N} = \{y_g \mid g \in G\}$ be a set of simple word normal forms over A for G. The set \mathcal{N} satisfies a (synchronous) K-fellow traveler property for a constant $K \geq 1$ if whenever $g, h \in G$ and $a \in A$ with $ga =_G h$, and we write $y_g = a_1 \cdots a_m$ and $y_h = b_1 \cdots b_n$ with each $a_i, b_i \in A$ (where, without loss of generality, we assume $m \leq n$), then for all $1 \leq i \leq m$ we have $d_\Gamma(a_1 \cdots a_i, b_1 \cdots b_i) \leq K$, and for all $m < i \leq n$ we have $d_\Gamma(g, b_1 \cdots b_i) \leq K$. The group G is combable if G admits a language of normal forms satisfying a K-fellow traveler property. (Note that this notion of combable is not connected to the notion of tame combable discussed earlier in this paper; not every tame combable group satisfies the combable property.)

The K-fellow traveler property implies that the set R of nonempty words over A of length up to $2K + 2$ that represent the trivial element is a set of defining relators for G. Let $\mathcal{P} = \langle A \mid R \rangle$ be the symmetrized presentation for G, and let X be the Cayley complex.
A van Kampen diagram Δ_e for any word of the form $y_g a y_{g a}$ (with $g \in G$ and a in A) corresponding to the edge $e = e_{g,a} \in \tilde{E}(\Gamma)$ is built as follows. As above, write $y_g = a_1 \cdots a_m$ and $y_{g a} = b_1 \cdots b_n$ with each $a_i, b_i \in A$. For each $m < i \leq n$, let a_i denote the empty word, and conversely if $n < i \leq m$ let $b_i := 1$. Define the words $c_0 := 1$, $c_n := a$, and for each $1 \leq i \leq n-1$, let c_i be a word in A^* labeling a geodesic path in Γ from $a_1 \cdots a_i$ to $b_1 \cdots b_i$; thus each c_i has length at most K. The diagram Δ_e is built by successively gluing 2-cells labeled $c_{i-1} a_i c_i^{-1} b_i$, for $1 \leq i \leq n$, along their common c_i boundaries. Then the diagram Δ_e is “thin”, in that it has only the width of (at most) one 2-cell. An edge homotopy Θ_e for this diagram can be constructed to go successively through each 2-cell in turn from the basepoint $*$ to the edge \hat{e} corresponding to e; see Figure 11 for an illustration. Let $\mathcal{E} = \{(\Delta_e, \Theta_e)\}$ be the collection of these normal form diagrams and edge homotopies; the pair (N, \mathcal{E}) is a combed normal filling.

Before imposing a geometric restriction on the normal forms, we first consider a more general case of combable groups with respect to simple word normal forms.

Proposition 6.1. Let G be a group with a finite generating set A and Cayley graph Γ. If G has a set N of normal forms that label simple paths in Γ and satisfy a K-fellow traveler property such that the set

\[S_n := \{ w \in A^* \mid d_\Gamma(e, w) \leq n \text{ and } w \text{ is a prefix of a word in } N \} \]

is a finite set for all $n \in \mathbb{N}$, then G satisfies both intrinsic and extrinsic tame filling inequalities for finite-valued functions.

Proof. We use the finite presentation P for G, with Cayley complex X, and the combed normal filling (N, \mathcal{E}) constructed above. Let $\mathcal{F} = \{ (\Delta_w, \Psi_w) \mid w \in A^*, w \equiv G e \}$ be the combed filling obtained from \mathcal{E} via the seashell procedure. Also let Δ_w be any of the diagrams in \mathcal{F}, let p be any point in $\partial \Delta_w$, and let $0 \leq s < t \leq 1$.

Let \hat{e} be an edge of $\partial \Delta_w$ containing p (where p may be in the interior or an endpoint). Then the path $\Psi_w(p, \cdot)$ lies in a subdiagram Δ_e of Δ_w such that Δ_e is the diagram in \mathcal{E} corresponding to the edge $e = \pi_{\Delta_w}(\hat{e})$ of X, and $\Psi_w(p, \cdot) = \Theta_e(p, \cdot)$. Let \hat{g} be an endpoint of \hat{e}, with $g = \pi_{\Delta_e}(\hat{g}) \in G$ an endpoint of e. Let y_g be the normal form of g in N.

Applying the “thinness” of Δ_e, there is a path labeled y_g in $\partial \Delta_e$ starting at the basepoint, and every point of Δ_e lies in some closed cell of Δ_e that also contains a vertex in this boundary path. In particular, there are vertices v_s and v_t on the boundary path y_g of Δ_e.
such that the point \(\Psi_w(p, s) = \Theta_s(p, s) \) and the point \(v_s \) occupy the same closed 0, 1, or 2-cell in \(\Delta_e \) (and hence also in \(\Delta_w \)), \(\Psi_w(p, t) = \Theta_t(p, t) \) and \(v_t \) occupy a common closed cell, and \(v_s \) occurs before (i.e., closer to the basepoint) or at \(v_t \) along the \(y_0 \) path. As usual let \(\zeta \leq 2K + 2 \) denote the length of the longest relator in the presentation \(P \). Then we have
\[
|\tilde{d}_{\Delta_w}(\ast, \Psi_w(p, s)) - \tilde{d}_{\Delta_w}(\ast, v_s)| \leq \zeta + 1 \quad \text{and} \quad |\tilde{d}_X(\epsilon, \pi_{\Delta_w}(\Psi_w(p, s))) - \tilde{d}_X(\epsilon, \pi_{\Delta_w}(v_s))| \leq \zeta + 1,
\]
and similarly for the pair \(\Psi_w(p, t) \) and \(v_t \). Write the word \(y_0 = y_1y_2y_3 \) where the vertex \(v_s \) occurs on the \(y_0 \) path in \(\partial\Delta_e \subseteq \Delta_w \) between the \(y_1 \) and \(y_2 \) subwords, and the vertex \(v_t \) between the \(y_2 \) and \(y_3 \) subwords. Note that \(y_1y_2 \) is a prefix of a normal form word in \(\mathcal{N} \), and so satisfies \(y_1y_2 \in S_{\tilde{d}_X(\epsilon, \pi_{\Delta_w}(v_3))} \).

Define the function \(t^i : \mathbb{N} \to \mathbb{N} \) by
\[
t^i(n) := \max\{l(w) \mid w \in S_n\}.
\]
Since each \(|S_n| \) is finite, this function is finite-valued. Using the fact that \(t^i \) is a nondecreasing function, we have
\[
\tilde{d}_{\Delta_w}(\ast, \Psi_w(p, s)) \leq \tilde{d}_{\Delta_w}(\ast, v_s) + \zeta + 1 \leq l(y_1) + \zeta + 1 \\
\leq l(y_1y_2) + \zeta + 1 \leq t^i(\tilde{d}_X(\epsilon, \pi_{\Delta_w}(v_t))) + \zeta + 1 \\
\leq t^i(\tilde{d}_{\Delta_w}(\ast, v_t)) + \zeta + 1 \\
\leq t^i(\tilde{d}_{\Delta_w}(\ast, \Psi_w(p, t))) + \zeta + 1 + \zeta + 1.
\]
Then \(G \) satisfies an intrinsic tame filling inequality for the function \(n \to t^i([n] + 2K + 3) + 2K + 3. \)

Next define the function \(t^e : \mathbb{N} \to \mathbb{N} \) by
\[
t^e(n) := \max\{d_X(\epsilon, v) \mid v \text{ is a prefix of a word in } S_n\}.
\]
Again, this is a finite-valued nondecreasing function. In this case, we note that since \(y_1 \) is a prefix of \(y_1y_2 \), then \(y_1 \) is a prefix of a word in \(S_{\tilde{d}_X(\epsilon, \pi_{\Delta_w}(v_t))} \). Then
\[
\tilde{d}_X(\epsilon, \pi_{\Delta_w}(\Psi_w(p, s))) \leq \tilde{d}_X(\epsilon, \pi_{\Delta_w}(v_s)) + \zeta + 1 = d_X(\epsilon, y_1) + \zeta + 1 \\
\leq t^e(d_X(\epsilon, \pi_{\Delta_w}(v_t))) + \zeta + 1 \\
\leq t^e(\tilde{d}_X(\epsilon, \pi_{\Delta_w}(\Psi_w(p, t)))) + \zeta + 1 + \zeta + 1.
\]
Then \(G \) satisfies an extrinsic tame filling inequality for the function \(n \to t^e([n] + 2K + 3) + 2K + 3. \)

We highlight two special cases in which the hypothesis of Proposition 6.1, that each set \(S_n \) is finite, is satisfied. The first is the case in which the set of normal forms is prefix-closed. For this case, the functions \(t^i = k^i_\mathcal{N} \) and \(t^e = k^e_\mathcal{N} \) are the functions defined in Section 4, and so we have the following.

Corollary 6.2. If \(G \) has a prefix-closed set of normal forms that satisfies a \(K \)-fellow traveler property, then \(G \) admits an intrinsic tame filling inequality for the function \(f^i(n) = k^i_\mathcal{N}([n] + 2K + 3) + 2K + 3 \) and an extrinsic tame filling inequality for the function \(f^e(n) = k^e_\mathcal{N}([n] + 2K + 3) + 2K + 3. \)

The second is the case in which the set of normal forms is quasi-geodesic; that is, there are constants \(\lambda, \lambda' \geq 1 \) such that every word in this set is a \((\lambda, \lambda') \)-quasi-geodesic. For a group \(G \) with generators \(A \) and Cayley graph \(\Gamma \), a word \(y \in A^* \) is a \((\lambda, \lambda') \)-quasi-geodesic if whenever \(y = y_1y_2y_3 \), then \(l(y_2) \leq \lambda d_\Gamma(\epsilon, y_2) + \lambda' \). Actually, we will only need a slightly
weaker property, that this inequality holds whenever y_2 is a prefix of y (i.e., when $y_1 = 1$).
In this case, the set S_n is a subset of the finite set $\bigcup_{i=0}^{\lambda n+\lambda'} A^i$ of words of length at most $\lambda n + \lambda'$. Then $t^\prime(n) \leq t^\prime(n) \leq \lambda n + \lambda'$ for all n. Putting these results together yields the following.

Corollary 6.3. If a finitely generated group G admits a quasi-geodesic language of normal forms that label simple paths in the Cayley graph and that satisfy a K-fellow traveler property, then G satisfies linear intrinsic and extrinsic tame filling inequalities.

7. Quasi-isometry invariance for tame filling inequalities

In this section we give the proof of Theorem 7.1, showing that, as with the diameter inequalities [4], [9], tame filling inequalities are also quasi-isometry invariants, up to Lipschitz equivalence of functions (and in the intrinsic case, up to sufficiently large set of defining relations). In the extrinsic case, this follows from Corollary 3.4 and the proof of Theorem [12, Theorem A], but with a slightly different definition of coarse distance. We include the details for both here, to illustrate the difference between the intrinsic and extrinsic cases.

Proof of Theorem 7.1. Write the finite presentations $P = \langle A \mid R \rangle$ and $P' = \langle B \mid S \rangle$; as usual we assume that these presentations are symmetrized. Let X be the 2-dimensional Cayley complex for the pair (G, P), and let Y be the Cayley complex associated to (H, P'). Let d_X, d_Y be the path metrics in X and Y (and hence also the word metrics in G and H with respect to the generating sets A and B), respectively.

Quasi-isometry of these groups means that there are functions $\phi : G \to H$ and $\theta : H \to G$ and a constant $k > 1$ such that for all $g_1, g_2 \in G$ and $h_1, h_2 \in H$, we have

1. $\frac{1}{k}d_X(g_1, g_2) - k \leq d_Y(\phi(g_1), \phi(g_2)) \leq kd_X(g_1, g_2) + k$
2. $\frac{1}{k}d_Y(h_1, h_2) - k \leq d_X(\theta(h_1), \theta(h_2)) \leq kd_Y(h_1, h_2) + k$
3. $d_X(g_1, \theta \circ \phi(g_1)) \leq k$
4. $d_Y(h_1, \phi \circ \theta(h_1)) \leq k$

By possibly increasing the constant k, we may also assume that $k > 2$ and that $\phi(\epsilon_G) = \epsilon_H$ and $\theta(\epsilon_H) = \epsilon_G$, where ϵ_G and ϵ_H are the identity elements of the groups G and H, respectively.

We extend the functions ϕ and θ to functions $\bar{\phi} : G \times A^* \to B^*$ and $\bar{\theta} : H \times B^* \to A^*$ as follows. Let $A \subset A$ be a subset containing exactly one element for each inverse pair $a, a^{-1} \in A$. Given a pair $(g, a) \in G \times A$, using property (1) above we let $\bar{\phi}(g, a)$ be (a choice of) a nonempty word of length at most $2k$ labeling a path in the Cayley graph Y^1 from the vertex $\phi(g)$ to the vertex $\phi(ga)$ (in the case that $\phi(g) = \phi(ga)$, we can choose $\phi(g, a)$ to be the nonempty word ba^{-1} for some choice of $b \in B$). We also define $\bar{\phi}(g, a^{-1}) := \bar{\phi}(ga^{-1}, a)^{-1}$. Then for any $w = a_1 \cdots a_m$ with each $a_i \in A$, define $\bar{\phi}(g, w)$ to be the concatenation $\bar{\phi}(g, w) := \bar{\phi}(g, a_1) \cdots \bar{\phi}(ga_1 \cdots a_{m-1}, a_m)$. Note that for $w \in A^*$:

5. the word lengths satisfy $l(w) \leq l(\bar{\phi}(g, w)) \leq 2kl(w)$, and
6. the word $\bar{\phi}(\epsilon_G, w)$ represents the element $\phi(w)$ in H.

The function $\tilde{\theta}$ is defined analogously.

Using Proposition 3.2, we will prove this theorem utilizing S^1-combed fillings rather than combed fillings. For the group G with presentation \mathcal{P}, fix a collection $\mathcal{F} = \{ (\Delta_w, \Phi_w) \mid w \in A^*, w =_G \epsilon_G \}$ of van Kampen diagrams and associated disk homotopies, such that all of the Φ_w are intrinsically f^i-tame or all Φ_w are extrinsically f^e-tame, where $f^i, f^e : \mathbb{N}[\frac{1}{4}] \to \mathbb{N}[\frac{1}{4}]$ are nondecreasing functions.

Case A. Suppose that G is a finite group.

In this case, H is also finite. Let \mathcal{F} be a (finite) collection of van Kampen diagrams over \mathcal{P}', one for each word over B of length at most $|H|$ that represents ϵ_H. Now given any word u over B with $u =_H \epsilon_H$, we will construct a van Kampen diagram for u with intrinsic diameter at most $|H| + \max\{ \text{idiam}(\Delta) \mid \Delta \in \mathcal{F} \}$, as follows. Start with a planar 1-complex that is a line segment consisting of an edge path labeled by the word u starting at a basepoint $*$; that is, we start with a van Kampen diagram for the word u. Write $u = u_1'u_2'u_3''$ where $u_1' =_H \epsilon_H$ and no proper prefix of $u_1'u_2'u'''$ contains a subword that represents ϵ_H. Note that $l(u_1'u_2') \leq |H|$. We identify the vertices in the van Kampen diagram at the start and end of the boundary path labeled u_2'', and fill in this loop with the van Kampen diagram from \mathcal{F} for this word. We now have a van Kampen diagram for the word uu_2^{-1} where $u_1 := u_1'u_2''$. We then begin again, and write $u_1 = u_2'u_2''u_3''$ where $u_2'' =_H \epsilon_H$ and no proper prefix of $u_2'u_2''$ contains a subword representing the identity. Again we identify the vertices at the start and end of the word u_2'' in the boundary of the diagram, and fill in this loop with the diagram from \mathcal{F} for this word, to obtain a van Kampen diagram for the word uu_2^{-1} where $u_2 := u_2'u_2''$. Repeating this process, since at each step the length of u_k strictly decreases, we eventually obtain a word $u_k = u_k''$. Identifying the endpoints of this word and filling in the resulting loop with the van Kampen diagram in \mathcal{F} yields a van Kampen diagram Δ'_u for u. See Figure 12 for an illustration of this procedure. At each step, the maximum distance from the basepoint $*$ to any vertex in the van Kampen diagram included from \mathcal{F} is at most $|H| + \max\{ \text{idiam}(\Delta) \mid \Delta \in \mathcal{F} \}$, because this subdiagram is attached at the endpoint of a path starting at $*$ and labeled by the word u_k' of length less than $|H|$. At the end of this process, every vertex of the final diagram lies on one of these subdiagrams. Hence we obtain the required intrinsic diameter bound.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure12.png}
\caption{Building Δ'_u in the finite group case}
\end{figure}
Let Φ_u' be any disk homotopy of the diagram Δ_u'. Then the collection $\{(\Delta_u', \Phi_u')\}$ of van Kampen diagrams and disk homotopies H over \mathcal{P} satisfies the property that each homotopy Φ_u' is intrinsically f-tame for the constant function $f(n) \equiv |H| + \max\{\text{idiam}(\Delta) \mid \Delta \in \mathcal{F}\} + \frac{1}{2}$, since this constant is an upper bound for the coarse distance from the basepoint to every point of Δ_u'. Hence H admits a S^1-combed filling whose disk homotopies are intrinsically tame with respect to the function $f^i + f$ which is Lipschitz equivalent to f^i.

Similarly, since the extrinsic diameter of every van Kampen diagram in this collection (or, indeed, any other van Kampen diagram) is at most $|H|$, the pair (H, \mathcal{P}') satisfies an extrinsic tame filling inequality for the constant function $|H| + \frac{1}{2}$, and so also satisfies an extrinsic tame filling inequality for the function $n \rightarrow f^e(n) + |H| + \frac{1}{2}$.

Case B. Suppose that G is an infinite group.

The group H is also infinite, and so the functions f^i and f^e must grow at least linearly, in this case. In particular, we have $f^i(n) \geq n - \zeta - 1$ and $f^e(n) \geq n - \zeta - 1$ for all $n \in \mathbb{N}[\frac{1}{4}]$, where $\zeta = \max\{l(r) \mid r \in R\}$ is the maximum length of a relator in the presentation \mathcal{P}.

Now suppose that u' is any word in B^* with $u' =_{H} \epsilon_H$. We will construct a van Kampen diagram for u', following the method of [4, Theorem 9.1]. At each of the four successive steps, we obtain a van Kampen diagram for a specific word; we will also keep track of homotopies and analyze their tameness, in order to finish with a diagram and disk homotopy for u'.

Step I. For $u := \bar{\theta}(\epsilon_H, u') \in A^*$: Note (6) implies that the word $u =_G \theta(u') =_G \theta(\epsilon_H) =_G \epsilon_G$, and so the collection \mathcal{F} contains a van Kampen diagram Δ_u for u and an associated disk homotopy $\Phi_u : C_{l(u)} \times [0, 1] \rightarrow \Delta_u$. Note that Φ_u is intrinsically $f^i := f^i$-tame or extrinsically $f^e := f^e$-tame.

Step II. For $z'' := \bar{\phi}(\epsilon_G, u) = \bar{\phi}(\epsilon_G, \bar{\theta}(\epsilon_H, u')) \in B^*$: We build a finite, planar, contractible, combinatorial 2-complex Ω from Δ_u as follows. As usual, let $\pi_{\Delta_u} : \Delta_u \rightarrow X$ be the map taking the basepoint $*$ of Δ_u to ϵ_G and preserving directed labeled edges. Given any edge e in Δ_u, choose a direction, and hence a label a_e, for e, and let v_1 be the initial vertex of e. Replace e with a directed edge path \hat{e} labeled by the (nonempty) word $\bar{\phi}(v_1, a_e)$. Repeating this for every edge of the complex Δ_u results in the 2-complex Ω.

Note that Ω is a van Kampen diagram for the word $z'' := \bar{\phi}(\epsilon_G, u) = \bar{\phi}(\epsilon_G, \bar{\theta}(\epsilon_H, u')) \in B^*$ with respect to the presentation $\mathcal{P}'' = \langle B \mid S \cup S'' \rangle$ of H, where S'' is the set of all nonempty words over B of length at most $2k\zeta$ that represent ϵ_H. Let Y'' be the Cayley complex for \mathcal{P}'' and as usual, let $\pi_{\Omega} : \Omega \rightarrow Y''$ be the function mapping basepoint to basepoint and preserving directed labeled edges.

Using the fact that the only difference between Δ_u and Ω is a replacement of edges by edge paths, we define $\alpha : \Delta_u \rightarrow \Omega$ to be the continuous map taking each vertex and each interior point of a 2-cell of Δ_u to the same point of Ω, and taking each edge e to the corresponding edge path \hat{e}.

Writing $u = a_1 \cdots a_m$ with each $a_i \in A$, then $z'' = c_{1,1} \cdots c_{1,j_1} \cdots c_{m,1} \cdots c_{m,j_m}$ where each $c_{i,j} \in B$ and $c_{i,1} \cdots c_{i,j_i}$ is the nonempty word labeling the edge path \hat{e}_i of Ω that is the image under α of the i-th edge of the boundary path of Δ_u. Recall that $C_{l(u)}$ is the
circle \(S^1 \) with a 1-complex structure of \(I(u) \) vertices and edges. Let the 1-complex \(C_{I(u)} \) be a refinement of the complex \(C_{I(v)} \), so that the \(i \)-th edge of \(C_{I(u)} \) is replaced by \(j_i \geq 1 \) edges for each \(i \), and let \(\hat{\alpha} : C_{I(v)} \to C_{I(u)} \) be the identity on the underlying circle. Finally, define the map \(\omega : C_{I(v)} \times [0,1] \to \Omega \) by \(\omega := \alpha \circ \Phi_u \circ (\hat{\alpha} \times id_{[0,1]}). \) This map \(\omega \) satisfies conditions (d1)-(d2) of the definition of disk homotopy.

Next we analyze the intrinsic tameness of \(\omega \). Again since in this step we have only replaced edges by nonempty edge paths of length at most \(2k \), for each vertex \(v \in \Delta_u \) we have \(\tilde{d}_{\Delta_u}(*,v) \leq \tilde{d}_\Omega(*,\alpha(v)) \leq 2k \tilde{d}_{\Delta_u}(*,v) \). For a point \(q \) in the interior of an edge of \(\Delta_u \), let \(v \) be a vertex in the same closed cell; then \(|\tilde{d}_{\Delta_u}(*,q) - \tilde{d}_{\Delta_u}(*,v)| < 1 \) and \(|\tilde{d}_\Omega(*,\alpha(q)) - \tilde{d}_\Omega(*,\alpha(v))| < 2k \). For a point \(q \) in the interior of a 2-cell of \(\Delta_u \), let \(v \) be a vertex in the closure of this cell with \(\tilde{d}_{\Delta_u}(*,v) < \tilde{d}_{\Delta_u}(*,q) + 1 \). Then \(\alpha(v) \) is a vertex in the closure of the open 2-cell of \(\Omega \) containing \(\alpha(q) \), and the boundary path of this cell has length at most \(2k \zeta \). That is, \(|\tilde{d}_{\Delta_u}(*,q) - \tilde{d}_{\Delta_u}(*,v)| < 1 \) and \(|\tilde{d}_\Omega(*,\alpha(q)) - \tilde{d}_\Omega(*,\alpha(v))| < 2k \zeta \). Thus for all \(q \in \Delta_u \), we have \(\tilde{d}_{\Delta_u}(*,\omega(p,t)) = \tilde{d}_{\Omega}(*,\alpha(q)) \leq 2k \tilde{d}_{\Delta_u}(*,q) + 4k + 2k \zeta \).

Now suppose that \(p \) is any point in \(C_{I(v)} \) and \(0 < s < t \leq 1 \). Combining the inequalities above with the \(f_1^I \)-tame property of \(\Phi_u \) and the fact that \(f_1^I \) is nondecreasing yields

\[
\tilde{d}_\Omega(*,\omega(p,s)) = \tilde{d}_\Omega(*,\alpha(\Phi_u(\hat{\alpha}(p),s))) \\
\leq 2k \tilde{d}_{\Delta_u}(*,\Phi_u(\hat{\alpha}(p),s)) + 4k + 2k \zeta \\
\leq 2k f_1^I(\tilde{d}_{\Delta_u}(*,\Phi_u(\hat{\alpha}(p),t))) + 4k + 2k \zeta \\
\leq 2k f_1^I(\tilde{d}_\Omega(*,\alpha(\Phi_u(\hat{\alpha}(p),t)))) + 4k + 2k \zeta \\
= 2k f_1^I(\tilde{d}_\Omega(*,\omega(p,t))) + 4k + 2k \zeta .
\]

Hence \(\omega \) is intrinsically \(f_2^I \)-tame for the nondecreasing function \(f_2^I(n) := 2k f_1^I(n) + 4k + 2k \zeta \).

In the last part of Step II, we analyze the extrinsic tameness of \(\omega \). For any vertex \(v \in \Delta_u \), let \(w_v \) be a word labeling a path in \(\Delta_u \) from \(*\) to \(v \). Using note (6) above, we have \(\phi(\pi_{\Delta_u}(v)) =_H \phi(w_v) =_H \tilde{\phi}(\epsilon_G, w_v) = \pi_\Omega(\alpha(v)) \), by our construction of \(\Omega \). The quasi-isometry property (1) then gives

\[
\frac{1}{k} d_X(\epsilon_G, \pi_{\Delta_u}(v)) - k \leq d_Y(\epsilon_H, \phi(\pi_{\Delta_u}(v))) = d_Y(\epsilon_H, \pi_\Omega(\alpha(v))) \leq k d_X(\epsilon_G, \pi_{\Delta_u}(v)) + k .
\]

Since the generating sets of the presentations \(\mathcal{P}' \) and \(\mathcal{P}'' \) of \(H \) are the same, the Cayley graphs and their path metrics \(d_Y = d_Y'' \) are also the same. As in the intrinsic case above, for a point \(q \) in the interior of an edge or 2-cell of \(\Delta_u \), there is a vertex \(v \) in the same closed cell with \(|\tilde{d}_X(\epsilon_G, \pi_{\Delta_u}(q)) - \tilde{d}_X(\epsilon_G, \pi_{\Delta_u}(v))| < 1 \) and \(|d_Y''(\epsilon_G, \pi_\Omega(\alpha(q))) - d_Y''(\epsilon_G, \pi_\Omega(\alpha(v)))| < 2k(\zeta + 1) \). Then for all \(q \in \Delta_u \), we have

\[
\tilde{d}_X(\epsilon_G, \pi_{\Delta_u}(q)) \leq k d_Y''(\epsilon_H, \pi_\Omega(\alpha(q))) + 2k^2 \zeta + 3k^2 + 1 , \text{ and} \\
\tilde{d}_Y''(\epsilon_H, \pi_\Omega(\alpha(q))) \leq k \tilde{d}_X(\epsilon_G, \pi_{\Delta_u}(q)) + 4k + 2k \zeta .
\]
is a constant path at this vertex. Then the path at this vertex); let this vertex be the basepoint of Λ_u.

Note that if ω is a word labeling a geodesic edge path in Y, the inequality in (3) above implies that the length of w is at most ζ.

3

Now the complex Λ_u is a van Kampen diagram for the original word u', with respect to the presentation $P'' = \langle B \mid S \cup S'' \rangle$ of H, where S'' is the set of all nonempty words in B^* of length at most $\zeta'' := 2k\zeta + (2k)^2 + 2k + 1$ that represent ϵ_H. (Note that the presentation

\[\tilde{d}_{Y''}(\epsilon_H, \pi_\Omega(\omega(p, s))) = \tilde{d}_{Y''}(\epsilon_H, \pi_\Omega(\alpha(\Phi_u(\hat{\alpha}(p), s)))) \]

\[\leq k\tilde{d}_X(\epsilon_G, \pi_{\Delta_u}(\Phi_u(\hat{\alpha}(p), s))) + 4k + 2k\zeta \]

\[\leq k\tilde{f}_1(\tilde{d}_X(\epsilon_G, \pi_{\Delta_u}(\Phi_u(\hat{\alpha}(p), t)))) + 4k + 2k\zeta \]

\[\leq k\tilde{f}_1(k\tilde{d}_Y''(\epsilon_H, \pi_\Omega(\omega(p, t))) + 2k^2\zeta + 3k^2 + 1) + 4k + 2k\zeta \]

Hence ω is extrinsically f_2^*-tame for the nondecreasing function $f_2^*(n) := k\tilde{f}_1^*(kn + 2k^2\zeta + 3k^2 + 1) + 4k + 2k\zeta$.

Step III. For u' over P''': In this step we construct another finite, planar, contractible, and combinatorial 2-complex $\Lambda_{u'}$ starting from Ω, by adding a “collar” around the outside boundary. Write the word $u' = b_1 \cdots b_n$ with each $b_i \in B$. For each $1 \leq i \leq n - 1$, let w_i be a word labeling a geodesic edge path in Y from $\phi(\theta(b_1 \cdots b_i))$ to $b_1 \cdots b_i$; the quasi-isometry inequality in (3) above implies that the length of w_i is at most k. We add to $\Lambda_{u'}$ a vertex x_i and the vertices and edges of a directed edge path p_i labeled by w_i from the vertex x_i to x_i, where v_i is the vertex in $\partial \Delta_u$ at the end of the path $\tilde{\phi}(\theta(b_1 \cdots b_i))$ starting at the basepoint. Note that if w_i is the empty word, we identify x_i with the vertex v_i; the path p_i is a constant path at this vertex. Then $* = v_0 = x_0 = x_n$ (and p_0 and p_n are the constant path at this vertex); let this vertex be the basepoint of $\Lambda_{u'}$.

Next we add to $\Lambda_{u'}$ a directed edge \tilde{e}_i labeled by b_i from the vertex x_{i-1} to the vertex x_i. The path q_i from v_{i-1} to v_i along the boundary of the subcomplex Ω is labeled by the nonempty word $z_i := \phi(\theta(b_1 \cdots b_i))$. If both of the paths p_{i-1}, p_i are constant and the label of path q_i is the single letter b_i, then we identify the edge \tilde{e}_i with the path q_i. Otherwise, we attach a 2-cell σ_i along the edge circuit following the edge path starting at v_{i-1} that traverses the path q_i, the path p_i, the reverse of the edge \tilde{e}_i, and finally the reverse of the path p_{i-1}. See Figure 13 for a picture of the resulting diagram.

![Figure 13. The van Kampen diagram $\Lambda_{u'}$](image-url)
(B | S''') also presents H, and λ_u' is also a diagram over this more restricted presentation. Let Y'' be the corresponding Cayley complex.

We define a disk homotopy λ_u' : C_{(u')} × [0, 1] → Λ_u' by extending the paths of the homotopy ω on the subcomplex Ω as follows. First we let the cell complex C_{(u')} be the complex C_{(u'')} with each subpath in C_{(u'')} mapping to a path q_i in ∂Ω replaced by a single edge. From our definitions of ˜φ and ˜θ, each q_i path is labeled by a nonempty word, and so C_{(u'')} is a refinement of the complex structure C_{(u')} on S^3, and we let ˜ω : C_{(u')} → C_{(u'')} be the identity on the underlying circle. Next define a homoto py ˜λ : C_{(u'')} × [0, 1] → Λ_u' as follows. For each 1 ≤ i ≤ n, let ˜v_i be the point in S^1 mapped by ω to v_i. Define ˜λ(˜v_i, t) := ω(˜v_i, 2t) for t ∈ [0, 1/2], and let ˜λ(˜v_i, t) for t ∈ [1/2, 1] be a constant speed path along p_i from v_i to x_i. On the interior of the edge ˜e_i from ˜v_i to ˜x_i, define the homotopy ˜λ|_{[0, 1]} to follow ω|_{[0, 1]} at double speed, and let ˜λ|_{[1/2, 1]} go through the 2-cell σ_i (or, if there is no such cell, let this portion of ˜λ be constant) from q_i to ˜x_i. Finally, we define the homotopy λ_u' : C_{(u')} × [0, 1] → Λ_u' by λ_u' := ˜λ ◦ (β × id_{[0, 1]}). This map λ_u' is a disk homotopy for the diagram Λ_u'.

Next we analyze the intrinsic tameness of λ_u'. Since Ω is a subdiagram of Λ_u', for any vertex v in Ω, we have d_{Λ_u'}(*, v) ≤ d_{Ω}(*, v). Given any edge path β in Λ_u' from e to q that is not completely contained in the subdiagram Ω, the subpaths of β lying in the "collar" can be replaced by paths along ∂Ω of length at most a factor of k^2 longer. Then d_{Ω}(*, v) ≤ 4k^2d_{Λ_u'}(*, v). Hence for any point q ∈ Ω, we have d_{Λ_u'}(*, q) ≤ d_{Ω}(*, q) ≤ 4k^2d_{Λ_u'}(*, q) + 4k^2 + 1 + ζ'''.

Now suppose that p is any point of C_{(u')} and 0 ≤ s < t ≤ 1. If t ≤ 1/2, then the path λ_u'(p, ·) on [0, 1] is a reparametrization of ω(p, ·), and so Step II, the fact that f_2 is nondecreasing, and the inequalities above give

\[d_{Λ_u'}(*, λ_u'(p, s)) \leq d_{Ω}(*, λ_u'(p, s)) \leq f_2 d_{Ω}(*, λ_u'(p, t)) \leq f_2(4k^2d_{Λ_u'}(*, λ_u'(p, t)) + 4k^2 + 1 + ζ''') \]

If t > 1/2 and s ≤ 1/2, then we have d_{Λ_u'}(*, λ_u'(p, s)) ≤ f_2(4k^2d_{Λ_u'}(*, λ_u'(p, 1/2)) + 4k^2 + 1 + ζ''') and |d_{Λ_u'}(*, λ_u'(p, t)) − d_{Λ_u'}(*, λ_u'(p, 1/2))| < ζ''' + 1, so

\[d_{Λ_u'}(*, λ_u'(p, s)) \leq f_2(4k^2(d_{Λ_u'}(*, λ_u'(p, t)) + ζ''' + 1) + 4k^2 + 1 + ζ''') \]

If s > 1/2, then

\[d_{Λ_u'}(*, λ_u'(p, s)) \leq d_{Λ_u'}(*, λ_u'(p, t)) + ζ''' + 1 \leq f_2(4k^2 + 1 + (4k^2 + 1)ζ''') + ζ''' + 1, \]

where the latter inequality follows from the fact that n ≤ f_4(n) + ζ + 1 ≤ f_3(n) for this infinite group case. Then λ_u' is intrinsically f_3-tame for the function f_3(n) := f_3(4k^2n + 8k^2 + 1 + (4k^2 + 1)ζ'''').
We note that we have now completed the proof of Theorem 7.1 in the intrinsic case: The collection \(\{ (\Lambda_{u'}, \lambda_{u'}) \mid u' \in B', u' =_{H} \epsilon_{H} \} \) of van Kampen diagrams and disk homotopies over the presentation \(P''' = \langle B \mid S''' \rangle \) is a \(S^1 \)-combed filling with intrinsically \(f_3 \)-tame homotopies, and the function \(f_3 \) is Lipschitz equivalent to \(f^i \).

The analysis of the extrinsic tameness in this step is simplified by the fact that for all \(q \in \Omega \), we have \(\tilde{d}_{Y'''}(\epsilon_{H}, \pi_{\Omega}(q)) = \tilde{d}_{Y'''}(\epsilon_{H}, \pi_{\Lambda_{u'}}(q)) \), since the 1-skeleta of \(Y'' \) and \(Y''' \) are determined by the generating sets of the presentations \(P'' \) and \(P''' \), which are the same.

A similar argument to those above shows that \(\lambda_{u'} \) is extrinsically \(f_3 \)-tame for the function \(f_3(n) = f_3(n + \zeta''' + 1) + \zeta + 1 \).

Step IV. For \(u' \) over \(P' \): Finally, we turn to building a van Kampen diagram \(\Delta'_{u'} \) for \(u' \) over the original presentation \(P' \). For each nonempty word \(w \) over \(B \) of length at most \(\zeta''' \) satisfying \(w =_{H} \epsilon_{H} \), let \(\Delta'_{u'} \) be a fixed choice of van Kampen diagram for \(w \) with respect to the presentation \(P' \) of \(H \), and let \(F \) be the (finite) collection of these diagrams. A diagram \(\Delta'_{u'} \) over the presentation \(P' \) is built by replacing 2-cells of \(\Lambda_{u'} \), proceeding through the 2-cells of \(\Lambda_{u'} \) one at a time. Let \(\tau \) be a 2-cell of \(\Lambda_{u'} \), and let \(*_{r} \) be a choice of basepoint vertex in \(\partial \tau \). Let \(x \) be the word labeling the path \(\partial \tau \) starting at \(*_{r} \) and reading counterclockwise. Since \(l(x) \leq L \), there is an associated van Kampen diagram \(\Delta'_{x} = \Delta'_{x} \) in the collection \(F \). Note that although \(\Lambda_{u'} \) is a combinatorial 2-complex, and so the cell \(\tau \) is a polygon, the boundary label \(x \) may not be freely or cyclically reduced. The van Kampen diagram \(\Delta'_{x} \) may not be a polygon, but instead a collection of polygons connected by edge paths, and possibly with edge path “tendrils”. We replace the 2-cell \(\tau \) with a copy \(\Delta'_{x} \) of the van Kampen diagram \(\Delta'_{x} \), identifying the boundary edge labels as needed, obtaining another planar diagram. Repeating this for each 2-cell of of the resulting complex at each step, results in the van Kampen diagram \(\Delta'_{u'} \) for \(u' \) with respect to \(P' \).

From the process of constructing \(\Delta'_{u'} \) from \(\Lambda \), for each 2-cell \(\tau \) there is a continuous onto map \(\gamma : \Lambda_{u'} \rightarrow \Delta'_{u'} \). Note that the boundary edge paths of \(\Lambda_{u'} \) and \(\Delta'_{u'} \) are the same. Then the composition \(\Phi'_{u'} := \gamma \circ \lambda_{u'} : C\langle u' \rangle \times [0,1] \rightarrow \Delta'_{u'} \) is a disk homotopy.

To analyze the extrinsic tameness, we first note that for all points \(\tilde{q} \in \Lambda_{u'} \), the image \(\pi_{\Lambda_{u'}}(\tilde{q}) \) in \(Y''' \) and the image \(\pi_{\Delta'_{u'}}(\gamma(\tilde{q})) \) in \(Y \) are the same point in the 1-skeleton \(Y^1 = (Y'''^1) \), and so \(\tilde{d}_{Y'''}(\epsilon_{H}, \pi_{\Lambda_{u'}}(\tilde{q})) = \tilde{d}_{Y}(\pi_{\Delta'_{u'}}(\gamma(\tilde{q}))) \). Let \(M := 2 \max \{ \tilde{d}_{\Delta}(*, r) \mid \Delta \in F, r \in \Delta \} \).

Suppose that \(p \) is any point in \(C\langle u' \rangle \) and \(0 \leq s < t \leq 1 \). If \(\lambda_{u'}(p, s), x \in \Lambda_{u'} \), then define \(s' := s \); otherwise, let \(0 \leq s' < s \) satisfy \(\lambda_{u'}(p, s') \in \Lambda_{u'}^{x} \), and \(\lambda_{u'}(p, (s', s]) \) is a subset of a single open 2-cell of \(\Lambda_{u'} \). Similarly, if \(\lambda_{u'}(p, t) \in \Lambda_{u'}^{X} \), then define \(t' := t \), and otherwise, let \(t < t' \leq 1 \) satisfy \(\lambda_{u'}(p, t') \in \Lambda_{u'}^{x} \), and \(\lambda_{u'}(p, [t, t')) \) is a subset of a single open 2-cell of \(\Lambda_{u'} \).
Then
\[
\tilde{d}_Y(\epsilon_H, \pi_{\Delta',u'}(\Phi_{u'}(p,s))) = \tilde{d}_Y(\epsilon_H, \pi_{\Delta',u'}(\gamma(\lambda_{u'}(p,s))))
\]
\[
\leq \tilde{d}_Y(\epsilon_H, \pi_{\Lambda',u'}(\gamma(\lambda_{u'}(p,s')))) + M
\]
\[
= \tilde{d}_{Y''}(\epsilon_H, \pi_{\Lambda',u'}(\lambda_{u'}(p,s'))) + M
\]
\[
\leq f^e_3(\tilde{d}_{Y''}(\epsilon_H, \pi_{\Lambda',u'}(\lambda_{u'}(p,t')))) + M
\]
\[
= f^e_3(\tilde{d}_Y(\epsilon_H, \pi_{\Delta',u'}(\gamma(\lambda_{u'}(p,t'))))) + M
\]
\[
\leq f^e_3(\tilde{d}_Y(\epsilon_H, \pi_{\Delta',u'}(\gamma(\lambda_{u'}(p,t))))) + M + M.
\]

Therefore $\Phi_{u'}$ is extrinsically f^e_4-tame, for the function $f_4(n) := f_4(n + M) + M$. Since the functions f^j_4 and f^e_{j+1} are Lipschitz equivalent for all j, then f^e_4 is Lipschitz equivalent to f^e_4.

Now the collection $\{(\Delta'_u, \Phi_{u'}) \mid u' \in B^*, u' =_H \epsilon_H\}$ of van Kampen diagrams and disk homotopies is a S^1-combed filling for the pair (H, P') such that each homotopy is extrinsically tame with respect to a function that is Lipschitz equivalent to f^e.

The obstruction to applying Step IV of the above proof in the intrinsic case stems from the fact that the map $\gamma : \Lambda_{u'} \to \Delta'_{u'}$ behaves well with respect to extrinsic coarse distance, but may not behave well with respect to intrinsic coarse distance. The latter results because the replacement of a 2-cell τ of $\Lambda_{u'}$ with a van Kampen diagram $\Delta'_{u'}$ can result in the identification of vertices of $\Lambda_{u'}$.

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NEBRASKA, LINCOLN NE 68588-0130, USA
E-mail address: mbrittenham2@math.unl.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NEBRASKA, LINCOLN NE 68588-0130, USA
E-mail address: smh@math.unl.edu