
Monomial orderings, rewriting systems, and
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Abstract

In this paper we consider a free associative algebra on three gen-

erators over an arbitrary field K. Given a term ordering on the com-

mutative polynomial ring on three variables over K, we construct un-

countably many liftings of this term ordering to a monomial ordering

on the free associative algebra. These monomial orderings are total

well orderings on the set of monomials, resulting in a set of normal

forms. Then we show that the commutator ideal has an infinite re-

duced Gröbner basis with respect to these monomial orderings, and

all initial ideals are distinct. Hence, the commutator ideal has at least

uncountably many distinct reduced Gröbner bases. A Gröbner basis

of the commutator ideal corresponds to a complete rewriting system

for the free commutative monoid on three generators; our result also

shows that this monoid has at least uncountably many distinct mini-

mal complete rewriting systems.

The monomial orderings we use are not compatible with multi-

plication, but are sufficient to solve the ideal membership problem

for a specific ideal, in this case the commutator ideal. We propose

that it is fruitful to consider such more general monomial orderings in

non-commutative Gröbner basis theory.

1 Introduction

Let K be a field, let Σ = {a, b, c}, and let A = K〈a, b, c〉 be the free associative
algebra over K on Σ. Let

γ : K〈a, b, c〉 −→ K[x, y, z]

be the projection modulo the commutator ideal

I = (ab − ba, ac − ca, bc − cb).

In this paper we construct, for a given term ordering < on K[x, y, z], an un-
countable family of monomial orderings on A, which lift <, and the resulting
Gröbner basis theory of I.

This work was inspired by [1]. Given a term ordering on the commuta-
tive polynomial ring K[x1, . . . , xn] and an ideal I, the authors lift the term
ordering to an ordering on the free associative algebra K〈a1, . . . , an〉. Two
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monomials in the free algebra are compared by first comparing their projec-
tions to the polynomial ring. If those are equal, then the words are compared
lexicographically. The authors also lift the ideal I to an ideal in the free al-
gebra by adding the commutator relations. A main result in [1] is that, after
a generic change of coordinates in K[x1, . . . , xn], the lifted ideal in the free
algebra has a finite Gröbner basis. The idea of studying ideals in commuta-
tive polynomial rings by considering a non-commutative presentation arises
from work on the homology of coordinate rings of Grassmanians and toric
varieties. See also [6]. One can now ask what happens if one chooses more
exotic liftings of the commutative term ordering.

In the present paper, we construct other types of liftings. For each com-
mutative term ordering on K[x, y, x], we give uncountably many liftings to
K〈a, b, c〉. We then consider the commutator ideal, that is, the lifting of the
zero ideal to the free algebra, and study its Gröbner bases with respect to
the lifted monomial orderings. It is our hope that these monomial orderings
will prove useful in applications to commutative problems.

Two central features of Gröbner basis theory, both commutative and non-
commutative, are that it provides a set of normal forms and allows the solu-
tion of the ideal membership problem. In order to obtain both these features
for a given ideal and a given set of generators it is not required that one
start with a term ordering, that is, a total well-founded ordering on the set
of monomials which is compatible with multiplication. If the Buchberger or
Mora algorithm is performed with an ordering that is well-founded, and a set
of generators for the ideal is created by this algorithm for which the reduction
process modulo this set always terminates after finitely many steps in a nor-
mal form, then this generating set will solve the ideal membership problem
and give a set of normal forms. It is not even necessary that the ordering
be total. We believe that it might be very fruitful to study such “weak term
orderings” for free algebras. In the commutative case, one does not actually
obtain anything new, since each weak term ordering can be replaced by an
actual term ordering with the same normal forms [8]. This paper shows that
the result in [8] does not generalize to the noncommutative case.

One of the fundamental results in commutative Gröbner basis theory is
that every ideal in a polynomial ring has only finitely many initial ideals
(see, e.g., [9, Thm. 1.2]). It is well known that this result is false in the
non-commutative theory. A survey of counterexamples can be found in [2].
We show that the initial ideals of the commutator ideal in A with respect
to our monomial orderings are all distinct, so that the commutator ideal has
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at least uncountably many initial ideals, answering an open question in [2].
Since the difference between the commutative and non-commutative cases is
the commutator ideal, it is not surprising that the differences between the
two theories should manifest themselves there.

Since the commutator ideal is a binomial ideal with each generator con-
sisting of the difference of two monomials, the quotient ring is the monoid
ring over K for the free commutative monoid on three generators. Thus the
Mora algorithm for the commutator ideal and the Knuth-Bendix algorithm
for the monoid will produce the same set of normal forms if they start with
the same ordering. So our theorem also shows that for the free commutative
monoid on three generators, there are uncountably many distinct minimal
complete rewriting systems with respect to our orderings.

All of the possible term orderings on the set of words over two generators
have been classified in [4], [5], and [7]. While we have developed many
more orderings for words over three letters, we do not know if repeating
our constructions would allow us to find all of the Gröbner bases for the
commutator ideal. It would be of interest to attempt the classification of all
term orderings for three letters to answer this question.

2 Gröbner Bases and Rewriting Systems

Since the results in this paper can be interpreted both in the framework
of Gröbner basis theory and that of rewriting systems, we give here a brief
summary of relevant definitions and their relationship.

Let K be a field, let Σ be a finite set, let Σ∗ be the free monoid on Σ,
and let A = K〈Σ〉 = K[Σ∗] be the free associative algebra over K on Σ.

A rewriting system over Σ is a set R ⊆ Σ∗ × Σ∗ of replacement rules,
where an element (or rule) (u, v) ∈ R is also written u → v. In general,
if u → v, then whenever the word u appears inside a larger word, we will
replace it with the word v; that is, for any x, y ∈ Σ∗, we write xuy → xvy

and say that the word xuy is rewritten (or reduced) to the word xvy. An
element x ∈ Σ∗ is irreducible or in normal form if it cannot be rewritten.
The ordered pair (Σ, R) is a rewriting system for a monoid M if

〈 Σ | u = v if (u, v) ∈ R 〉

is a presentation for M .
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A rewriting system (Σ, R) is terminating if there is no infinite chain x →
x1 → x2 → · · · of rewritings; that is, if the partial ordering defined by x ≥ y

whenever x → · · · → y is well-founded. R is confluent if whenever a word
x can be rewritten in two different ways to words y1 and y2, then there are
rewritings from y1 and y2 to a common word z. When R is terminating,
confluence is equivalent to saying that there is exactly one irreducible word
representing each element of the monoid presented by the rewriting system.
The system R is complete if it is both terminating and confluent. Finally, it
is minimal if each right hand side, and each proper subword of a left hand
side, of a rule is irreducible.

In this paper we will use the expression monomial ordering to denote
a partial well-founded ordering on a set of monomials. A term ordering

is a monomial ordering with the additional properties that it is total and
compatible with multiplication; that is, whenever x < y in the ordering,
then wxz < wyz also.

Let < be a monomial ordering on K〈Σ〉. If f ∈ K〈Σ〉, the largest mono-
mial of f with respect to < is its leading term. A Gröbner basis for an ideal
I of A is a subset G of I such that the ideal generated by the leading terms
of elements in G is equal to the ideal generated by the leading terms of all
elements of I. A Gröbner basis G is reduced, if no term of any polynomial in
G is divisible by the leading term of a polynomial in G. In the following re-
sult we state the relationship between rewriting systems and Gröbner bases.
Its proof is straightforward.

Theorem 2.1 Suppose M is the free commutative monoid generated by
Σ = {a, b, c}. Let R be a minimal complete rewriting system for M , and let

G = {u − v | u → v ∈ R}.

Then G is a reduced Gröbner basis for the commutator ideal I of A.

The Gröbner bases of I corresponding to distinct rewriting systems of M

are also distinct. For more details on rewriting systems, Gröbner bases, and
the connections between them for monoid rings, see [3].

3 Monomial Orderings and Initial Ideals

Let
γ : A = K〈a, b, c〉 −→ K[x, y, z]
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be the canonical projection with kernel the commutator ideal I. In this
section we will prove the following theorem.

Theorem 3.1 Let < be a term ordering on K[x, y, z]. There exist mono-
mial orderings ≺r on A = K〈a, b, c〉, for each r in the interval (0, 1

2
) ⊂ R,

which are liftings of <, in the sense that, if γ(w) < γ(w′), then w ≺r w′.
Furthermore, the initial ideals of the commutator ideal I with respect to
the orderings ≺r are all distinct. Hence, I has uncountably many reduced
Gröbner bases. The reduced Gröbner bases for I with respect to ≺r are all
infinite.

As noted in the previous section, each minimal complete rewriting system
for the free commutative monoid M corresponds to a reduced Gröbner basis
for the commutator ideal I. Thus the proof of Theorem 3.1 follows directly
from the proof of the following theorem.

Theorem 3.2 Let < be a term ordering on K[x, y, z]. There exist well-
founded orderings ≺r on Σ∗, for each r in the interval (0, 1

2
) ⊂ R, which are

liftings of <, in the sense that, if γ(w) < γ(w′), then w ≺r w′. Furthermore,
the minimal complete rewriting systems for the free commutative monoid
M on three generators corresponding to these orderings are all distinct and
are all infinite. Hence, M has at least uncountably many minimal complete
rewriting systems.

Let
r = .i1i2 . . .

be the binary expansion of a real number r in the interval (0, 1
2
), with in ∈

{0, 1} for all n, and i1 = 0. (If r does not have a unique binary expansion,
we simply chose such an expansion.) Let m1, m2, . . . be the indices for which
imj

= 1, with 1 < m1 < m2 < · · ·. Set m0 = 1. Now associate the following
rewriting system Rrto r:

ab → ba, (1)
bc → cb, (2)
ca → ac, (3)

ackbj → ckbja whenever 1 ≤ j and mj−1 ≤ k < mj , (4j)
cmjbja → acmjbj whenever 1 ≤ j, (5j)

baic → cbai whenever 1 ≤ i (6i)

Thus, Rr is an infinite rewriting system for M .
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First consider the case that there are only finitely many such indices mj ,
with mJ being the largest one. Set mj = ∞, if j > J . In this case we have
rules (4j) for 1 ≤ j ≤ J + 1 and rules (5j) for 1 ≤ j ≤ J . Note that in this
case, the rewriting system has the additional property that it is regular, in
the sense that the set of word pairs given by the left and right hand sides
of rules is a regular language accepted by a finite state automaton. The
normal forms associated to the rewriting system are therefore also a regular
language.

To each word w in Σ∗ we associate an integer vector Ψ(w) as follows.
Each of the entries of this vector Ψ(w) will be a “barrier ordering”; we will
place barriers in w, and then use these barriers to associate a number to w.

To define the first entry α(w) of Ψ(w), insert barriers in w to immediate
the right of every letter c that occurs. For instance, if w = abc2baca, then
we place barriers as follows:

w = abc|c|bac|a.

Let lb(i) denote the number of occurrences of b to the left of the i-th barrier
in w. Suppose there are n barriers in w. Now define

α(w) = lb(1) + · · · + lb(n).

For the example w = abc2baca above, we have

α(w) = 1 + 1 + 2 = 4.

The other entries of Ψ(w) are defined similarly, but the barriers will be
placed after certain types of subwords rather than individual letters. First we
introduce some notation. Given any word t in Σ∗, let t̃ be the word obtained
from t by deleting all occurrences of a in t, and let la(t) denote the number
of occurrences of a in t. Suppose s is a word involving just the letters b and
c, and w is a word in Σ∗ as above. We can write

w = v1s1v2s2...skvk+1

where:
(i) s̃i = s,
(ii) if ti is a proper subword of si then t̃i 6= s, and
(iii) k is maximal.
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As in the definition of α, insert barriers into w immediately to the right
side of each subword si; then count the number of occurrences of a to the
left of each barrier; that is, define

L(s, w) =
k

∑

i=1

la(v1s1...visi).

Similarly, define

R(s, w) =
k

∑

i=1

la(sivi+1...skvk+1),

placing barriers to the left of each subword si and counting the number of
a’s to the right of the barriers.

Finally, define the vector Ψ(w) by

Ψ(w) = (α(w), L(cmJbJ+1, w), R(cmJbJ , w), ..., L(cm1b2, w), R(cm1b, w), L(cb, w)).

We are now ready to define the ordering ≺r on Σ∗, using the commutative
ordering < via the projection

γ : K〈a, b, c〉 = K[Σ∗] −→ K[x, y, z],

and the lexicographic ordering on the integer vector Ψ(w) associated to a
word w. We assume, without loss of generality (by relabeling the letters
a, b, c), that y < x < z in K[x, y, z], so that b ≺r a ≺r c.

Now let w, w′ be two words.

Definition 3.3 Let w ≺r w′ if

1. γ(w) < γ(w′), or

2. γ(w) = γ(w′) and Ψ(w) <lex Ψ(w′), or

3. γ(w) = γ(w′), Ψ(w) = Ψ(w′) and w <lex w′.

In this way we obtain a partial ordering on the words in Σ∗. We show in
Proposition 3.5 that this ordering is in fact a total ordering.

Example 3.4 Let r = .0101, and let w = cacb2cac2acbab2c. Then J = 2,
m0 = 1, m1 = 2, and m2 = 4. We need to compute

(

α(w), L(c4b3, w), R(c4b2, w), L(c2b2, w), R(c2b, w), L(cb, w)
)

.
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We may write w as

w = c|ac|b2c|ac|c|ac|bab2c|;

Then
α(w) = 0 + 0 + 2 + 2 + 2 + 2 + 5 = 13.

To compute L(c4b3, w), write v1 = cacb2, s1 = cac2acbab2, and v2 = c.
Then w = v1s1v2, s̃1 = c4b3, and conditions (i)–(iii) are met. In this case,

L(c4b3, w) = la(v1s1) = 4.

Computing R(c4b2, w) next, write v1 = cacb2, s1 = cac2acbab, and v2 = bc.
Again w = v1s1v2, but this time s̃1 = c4b2, and conditions (i)-(iii) in the
definition of R(c4b2, w) are met. In this case,

R(c4b2, w) = la(s1v2) = 3.

The decomposition of w to compute L(c2b2, w) is given by w = v1s1v2s2v3

where v1 = 1 (the empty word), s1 = cacb2, v2 = cac, s2 = cacbab, and
v3 = bc. Thus

L(c2b2, w) = la(v1s1) + la(v1s1v2s2) = 1 + 4 = 5.

Similar computations give R(c2b, w) = 6 and L(cb, w) = 4. Assembling
these numbers, we obtain

Ψ(w) = (13, 4, 3, 5, 6, 4).

Proposition 3.5. The partial ordering ≺r is a well-founded total order-
ing. Furthermore, the set Rr is a minimal complete rewriting system for the
free commutative monoid M with respect to ≺r.

Proof. We first show that the ordering is well-founded. The ordering
< on commutative polynomials is a term ordering, so it is well-founded. In
Definition 3.3, Ψ(w) and Ψ(w′) have the same length, so we can replace
the ordering <lex by the well-founded ordering <lengthlex in part (2) of the
definition without changing the ordering. Similarly, in item (3) two words w

and w′ will be compared using <lex only if γ(w) = γ(w′), so the words w and
w′ will have the same length. Then we can also replace the ordering <lex by
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the well-founded ordering <lengthlex in part (3) without altering the ordering
≺r. Therefore ≺r is also a well-founded ordering.

To show that ≺r is a total ordering, let w and w′ be words in Σ∗. We
need to show that they are comparable. Since the lengthlex ordering is a
total ordering, and item (3) of Definition 3.3 compares w and w′ with this
ordering, these two words must be comparable with the ordering ≺r, also.

Next we show that the process of reduction modulo Rr will always ter-
minate after finitely many steps. To do this, it is sufficient to show that if
we rewrite a word w, using one of the rules of types (1)–(6) above, then the
resulting word w′ is such that w′ ≺r w.

Suppose that a word w is rewritten to a word w′ using one of the rules.
Observe first that applying any of the rules does not change the value of
γ, so γ(w) = γ(w′). If one of the rules (2) or (6i), i ≥ 1, is applied, then
α(w′) < α(w), so w′ ≺r w.

Now consider the rule (4J+1), where mJ is the largest place for which a
1 occurs in the decimal expansion of r. Rewriting w to w′ by applying rule
(4J+1) leaves α unchanged, so α(w′) = α(w). However, L(cmJ bJ+1, w′) <

L(cmJ bJ+1, w), so this rule decreases Ψ and w′ ≺r w.
Applying rule (5J) does not alter the value of α. Also, since rule (5J)

cannot move an a past any of the barriers used to compute L(cmJ bJ+1, ·), it
will not alter its value. However, this rule does reduce R(cmJ bj , ·), and hence
decreases Ψ, so again w′ ≺r w.

Continuing inductively, we see that rewriting w to w′ by rules (4j), j ≤
J + 1 leaves α(w) = α(w′), L(cmJ bJ+1, w) = L(cmJ bJ+1, w′), R(cmJ bJ , w) =
R(cmJ bJ , w′),..., R(cmjbj , w) = R(cmjbj , w′), and L(cmjbj+1, w) > L(cmjbj+1, w′).
Similarly, applying a rule of the form (5j), j ≤ J leaves α(w) = α(w′),
L(cmJ bJ+1, w) = L(cmJ bJ+1, w′), R(cmJ bJ , w) = R(cmJ bJ , w′),..., L(cmj+1bj+2, w) =
L(cmj+1bj+2, w′), and R(cmjbj , w) > R(cmjbj , w′). In each case, then, the rules
(4j), (5j) decrease Ψ, and if one of these rules is applied to rewrite w to w′,
then w′ ≺r w.

Finally, if rule (1) or (3) is applied to w, then α(w′) = α(w). For each
index j, applying rule (1) or (3) either does not move past a barrier used to
compute L(cmjbj+1, ·) or R(cmjbj , ·), or else it moves an a past a barrier in a
way that will decrease the corresponding variable. Therefore Ψ(w′) ≤ Ψ(w).
However, rewriting by (1) and (3) decreases w lexicographically, since b ≺r

a ≺r c, so w′ ≺r w. Thus, we have shown that the reduction process always
decreases the well-founded ordering ≺r no matter what rule is applied, so
this process will always terminate after finitely many steps.
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Next we show that the reduction process results in normal forms. This is
straightforward to verify by showing that Rr is confluent. To obtain the set
of normal forms explicitly, let w be a word, which we write as

w = w1(a, c)bw2(a, c)b · · · bwn(a, c),

where the subwords wi(a, c) do not contain b. Using rule (3), we can rewrite
each wm in the form aick. Now, using rules (1)-(3) and (6i), it is straightfor-
ward to check that we can rewrite w to w′ = aickbjai′ . To rewrite w′ further,
we consider three cases.

First suppose that j = 0; then applying rule (3) repeatedly rewrites w′

to the form aick. Next suppose that j ≥ 1 and k < mj . Let 1 ≤ j′ ≤ j be an
integer such that mj′−1 ≤ k < mj′. Then

w′ = (aickbj′)bj−j′ai′,

and we can rewrite w′ to ckbjai+i′ using rules (4j′) and (1). Finally, if j ≥ 1
and k ≥ mj , then we write

w′ = aick−mj(cmjbjai′),

which we can rewrite to ai+i′ckbj , using rules (5j) and (3). Thus, the set of
normal forms is

{aick|i, k ≥ 0}∪{ckbjai|i, k ≥ 0, j ≥ 1, andk < mj}∪{a
ickbj |i, k ≥ 0, j ≥ 1, andk ≥ mj}.

This completes the proof of the proposition.

Remark. What keeps ≺r from being a term ordering in the usual sense
is that it is not compatible with multiplication. As an example, let r = .001,
so that J = 1, m0 = 1, m1 = 3. Let u = c2, w = cab2a and w′ = cba2b. Then
γ(w) = γ(w′), and

Ψ(w) = (0, 0, 0, 1) > (0, 0, 0, 0) = Ψ(w′),

so that w′ ≺1 w. But γ(uw) = γ(uw′), and

Ψ(uw) = (0, 1, 2, 1) < (0, 2, 2, 0) = Ψ(uw′).

In the proof of Theorem 3.2, it remains to consider the case of infinitely
many 1’s in the binary expansion of r. To define the ordering ≺r in this case,
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suppose that w and w′ are any words, and let l be the length of the longest
of the two words. Let r′ be the real number whose first l binary digits are
the same as those of r, and whose remaining digits are all zero. (Replace
the (l + 1)st digit with a 1, if necessary, to be sure that 0 < r′ < .1 = 1

2
.)

Then define w′ ≺r w if w′ ≺r′ w. This automatically gives the property
that w′ ≺r w whenever γ(w′) < γ(w), since this is true for ≺r′ . Note that
if 0 < r′ < r′′ < .1 and both have finite binary expansions whose first l

digits agree, then w′ ≺r′ w if and only if w′ ≺r′′ w; in other words, our
orderings ≺r behave well under formation of limits of the numbers r. This
implies that any infinite chain w1 �r w2 �r · · · corresponds to an infinite
chain w1 �r′ w2 �r′ · · · for a real number 0 < r′ < .1 with a finite binary
expansion. Well-foundedness of the ordering ≺r then follows from the well-
foundedness of the orderings ≺r′ in Proposition 3.5.

For any given word w of length l, the rules of Rr which can be applied in
the process of reducing w to its normal form must also appear in Rr′ ; appli-
cation of these rules strictly decreases the ordering ≺r. Thus we can truncate
the binary expansion of r after a finite number of 1’s, and we can proceed as
in the case of a finite binary expansion treated above; the reduction process
on w must terminate after finitely many steps.

Finally, to show that the reduction process results in normal forms in
the case when the expansion for r contains infinitely many 1’s, we can again
verify this by checking that Rr is confluent.

In summary, we have established a one-to-one correspondence between
all real numbers in the interval (0, 1

2
) and monomial orderings, or weak term

orderings, on the free monoid Σ∗. With respect to the monomial ordering
≺r, the free commutative monoid M has the minimal complete rewriting
system Rr defined above. Since Rr 6= Rr′ if r 6= r′, we have established a
one-to-one correspondence between the set of real numbers in (0, 1

2
) and a set

of complete rewriting systems of M . This completes the proof of Theorem
3.2 and therefore also that of Theorem 3.1.
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