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1. Introduction

Automatic structures for finitely presented groups are algorithmic and geometric

properties which provide solutions for the word problem. Isoperimetric functions for

groups measure how efficiently the word problem can be solved; for an automatic group,

the isoperimetric function grows at most quadratically as a function of word length, so

that the word problem can be solved in at most quadratic time ([10], Theorem 2.3.12).

The nilpotent groups which are automatic are known; a theorem of Holt states

that a nilpotent group is automatic if and only if it is virtually abelian ([10], Theorem

8.2.8). In this paper we investigate the question of whether this theorem still holds if

nilpotent groups are replaced with the larger class of soluble groups.

All automatic groups satisfy the homological finiteness condition FP∞ ([1], Corol-

lary 1), so it suffices to consider only the soluble groups which are of this type. A deep

theorem of Kropholler ([14], Corollary to Theorem B) implies that a soluble group of

type FP∞ must be constructible; this means that the group can be built up from the

† The second author wishes to thank the National Science Foundation for financial
support from grants INT-9223826 and DMS-9623088.
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trivial group using finite extensions and HNN extensions. So it suffices to consider

constructible groups if we wish to investigate automatic soluble groups.

Section 2 of this paper includes basic definitions of isoperimetric functions and

constructible groups. In Section 3 we show that every constructible soluble group

can be obtained by the following operations, in the given order: Start with a finitely

generated nilpotent group, form one HNN extension in which the base group coincides

with one of the associated subgroups (that is, an ascending HNN extension), form a

finite number of split extensions by infinite cyclic groups, and, finally, form a finite

extension.

The results of Section 3 show that every possible candidate for an automatic

soluble group must be obtained using this sequence of operations. If G is a finite index

subgroup of a groupH, then G is automatic if and only ifH is automatic([10], Theorem

4.1.4), so we can neglect the final operation.

In the rest of the paper, we concentrate on the special case in which the group G is

a single ascending HNN extension of a finitely generated torsion-free nilpotent group.

In Section 4 we determine a matrix criterion for when the group G is virtually nilpotent

or polycyclic, and note that G is polycyclic if and only if the HNN extension is actually

a split extension. In Sections 5 and 6 we investigate lower bounds for isoperimetric

functions for G, and obtain the following theorem.

Main Theorem. Suppose that G is an ascending HNN extension of a finitely generated

torsion-free nilpotent group. Then G is automatic if and only if G is virtually abelian.

Moreover, if G is not virtually nilpotent, then the isoperimetric function for G is at

least exponential, and if G is not polycyclic, the abelianized isoperimetric function for

G is also at least exponential.

Since an automatic group has isoperimetric function which grows at most quadrat-

ically as a function of word length, the second sentence of the Main Theorem follows

directly from Holt’s theorem and the isoperimetric function results in the third sen-

tence.

In [8], Bridson and Gersten have proved that these results are true in the special

case that G is a split extension of a free abelian group of finite rank by an infinite cyclic

group. We use topological techniques similar to those in the proof from [8] in Sections

5 and 6.1 to prove the lower bound on the isoperimetric function for the groups in the

Main Theorem.

In Section 6.2, we prove the lower bound on the abelianized isoperimetric func-

tion in the case that G is not polycyclic. The connection between the abelianized and

“usual” isoperimetric functions is an open problem; while it is known that the isoperi-

metric function is at least as large as the abelianized isoperimetric function for any

group [4], no example has been found of a group for which these two functions are not

equivalent. If the abelianized isoperimetric function has strictly smaller growth than

the isoperimetric function for the groups we consider, then the lower bound on the
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abelianized isoperimetric function in the Main Theorem gives a stronger result than

that in Section 6.1. In either case, the proof in Section 6.2 gives a second, substantially

different, proof of the Main Theorem when G is not polycyclic, which includes the de-

velopment of algebraic methods to find lower bounds on the abelianized isoperimetric

function. For these reasons, we include the details of this proof.

The Main Theorem determines which soluble groups are automatic only in the

special case in which the group is a single ascending HNN-extension of a torsion-free

nilpotent group. A generic example of a constructible soluble group, presented in

Section 3, for which our methods applied routinely do not work, is the group

〈s, t, a | [s, t] = 1, as = a2, at = a3〉.

We are left with the following conjecture.

Conjecture. A soluble group is automatic if and only if it is virtually abelian.

2. Background and notation

2.1. Isoperimetric functions

Suppose that G is a group with a finite presentation G = 〈A | Y 〉. Let w be an

element in the free group F = F (A) on the set A. Then under the canonical map

F → G, the element w maps to an element of G, which we will also denote w. To make

it clear when we are considering w as an element of F or G, we will use subscripts

on equations; for example, the equation w =G 1 means that w represents the trivial

element of G.

For an element w ∈ F , the equality w =G 1 is true if and only if

w =F

q∏

k=1

vkr
εk
k v

−1
k =F

q∏

k=1

(rεkk )
vk ,

for some εk ∈ {±1}, vk ∈ F and relators rk := akb
−1
k where ak = bk is a relation in

Y . In this case the area of the element w is defined to be the minimum value of q over

all such representations of w. The length of w is the length of a reduced word which

represents w over the alphabet A ∪A−1.

The expression for w as a product of conjugates of relators has an associated

van Kampen diagram; this is a planar 2-dimensional combinatorial CW-complex with

directed edge labels given by elements of A; the boundary edges spell out the word w,

and the boundary of each 2-cell is labeled by a relator formed from a relation in Y .

See [8] for definitions and details. The area of this diagram is the number of 2-cells,

and the area of w is then the area of the diagram for w with the fewest 2-cells.
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An isoperimetric function measures the relation between the area and the length

of words that represent the trivial element of the group. The isoperimetric function

or Dehn function of the presentation P = 〈A | Y 〉 of the group G is the function

f : N → N defined by

f(n) = max{area(w) | w =G 1, length(w) ≤ n}.

If P1 and P2 are two different presentations for the groupG, then the corresponding

isoperimetric functions f1 and f2 are equivalent, in the sense that there is a constant

C such that f1(n) ≤ Cf2(Cn+ C) + Cn+ C and f2(n) ≤ Cf1(Cn+ C) + Cn+ C for

every n ∈ N [2], [7], [11]. The isoperimetric function or Dehn function for the group

G, then, refers to the equivalence class of any isoperimetric function for a presentation

of G.

In [4], an abelianized isoperimetric function has been defined, by considering the

corresponding element w[R,R] in the relation module R/[R,R]. The area is then cal-

culated in the same way as above, using a minimal number of factors in an expression

for w[R,R] as a product of (cosets of) conjugates of the defining relators. This abelian-

ized isoperimetric function, like the Dehn function, is independent of the presentation

chosen, up to the same equivalence. In order to find lower bounds for this function,

the Fox free differential calculus can be applied (see [9], p. 45-46 for the definition and

details). To do this, the free derivatives of expressions for w as a word in the generators

A of the group and as a product of conjugates of relators are computed and compared.

We refer the reader to [4] for details.

2.2. Nilpotent groups

Suppose that N is a group. The lower central series of N is defined recursively

by γ1(N) = N , and for i ≥ 1, γi+1(N) = [γi(N), N ], the subgroup generated by

{aba−1b−1 | a ∈ γi(N), b ∈ N}. For ease of notation later in the paper, the commutator

subgroup γ2(N) is also denoted N ′, and the groups γi(N) are also denoted Ni. The

group N is a nilpotent group of class c if γc+1(N) = 1 and γc(N) 6= 1.

The isolator IN (L) of a subgroup L of a nilpotent group N is

IN (L) = I(L) = {x ∈ N | xm ∈ L for some m 6= 0}.

In nilpotent groups, the isolator of a subgroup is a subgroup. We shall also say that

a subgroup equal to its own isolator is isolated. It is easily verified that an isolator

subgroup is isolated. For more information, see Chapter 4 of [12].

2.3. Constructible groups

A group G is said to be 0-constructible if it is finite. It is said to be n-constructible

if it has a subgroup of finite index which is the fundamental group of a finite graph
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of groups of which the edge and vertex groups are (n − 1)-constructible. The group

is constructible if it is n-constructible for some finite n. In particular, constructible

groups are finitely presented and of type FP∞.

We shall be interested only in soluble constructible groups where the description

can be made much simpler. Here we need to use only finite extensions and HNN

extensions where one of the associated subgroups is equal to the base group. In fact,

a major consequence of Proposition 3.1 will be to give an even simpler description of

the necessary constructions.

We refer to [3] for details and further information about both constructible and

soluble constructible groups.

3. A description of constructible soluble groups

Our first result is a general description of constructible soluble groups.

Proposition 3.1. If H is a constructible soluble group, then there is a normal series

{1} ≤M ≤ K ≤ G ≤ H

such that G has finite index in H, G/M is torsion-free abelian, M is torsion-free

nilpotent, K/M is infinite cyclic and K is constructible.

Proof. Observe that H is finitely presented, of finite rank, and torsion-free-by-finite

(see, for example, the remark following Lemma 3 of [3]). Thus H is nilpotent-by-

abelian-by-finite (see the proof of Theorem 10.38 of [16]) and so we can choose normal

subgroups M and G of H so that M is torsion-free nilpotent, G/M is torsion-free

abelian and H/G is finite. Since H is finitely generated, both G and G/M must also

be finitely generated.

All that remains is to find the subgroup K with the desired properties. In order

to do this, we consider the Bieri-Strebel invariant ΣcMab
where Mab is the quotient

of M by its commutator subgroup, considered as a module for the finitely generated

abelian quotient group Q = G/M of G. We will use [6] as our principle reference for

the Bieri-Strebel invariant. Denote by E(Q) the set of all homomorphisms from Q to

the additive group of the real numbers. Define two such homomorphisms φ1 and φ2

to be equivalent if φ1 = λφ2 for some positive real number λ. This is an equivalence

relation and we shall denote the equivalence class of v ∈ E(Q) by [v]. Set S(Q) to

be the quotient of E(Q) − {0} by this equivalence relation. Note that we can identify

E(Q) with Rn where n is the rank of the free abelian group Q; we can then identify

S(Q) with an (n− 1)-sphere. The invariant ΣcMab
is a subset of S(Q). Note that the

invariant σ(H) used in [6] can be identified with both σ(G) and ΣcMab
.

Theorem 5.2 of [6] says that a finitely generated soluble group L is constructible

if and only if L is nilpotent-by-abelian-by-finite and σ(L) is contained in an open
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hemisphere; moreover, if so, σ(L) is finite and consists of a discrete set of points.

Because H is a finitely generated soluble constructible group, this theorem applies, so

ΣcMab
is a finite set of discrete points lying in an open hemisphere of S(Q). Since ΣcMab

lies in an open hemisphere of S(Q), there will be some q ∈ Q such that v(q) > 0 for all

[v] ∈ ΣcMab
; it is straightforward to see that we can choose q so that < q > is equal to

its isolator in Q. Choose t ∈ G so that the image of t in Q is q and denote by K the

group generated by M and t.

Finally, we need to check that this subgroup K of G satisfies the desired properties.

By definition of K, K/M is infinite cyclic, generated by t. In order to show K is

constructible, we again employ Theorem 5.2 of [6]. By definition, K is a nilpotent-by-

abelian subgroup of H.

In order to show that K is finitely generated, we consider the set S(Q,< q >)

of elements of S(Q) which are zero on < q >. Observe that S(Q,< q >) ∩ ΣcMab
is

empty and so, by Corollary 4.5 of [5], Mab is finitely generated as a < q >-module.

Thus there is a finitely generated subgroup N of M so that M = N<t>M ′. By (for

example) Corollary 1 to Lemma 2.6 of [12], N<t> = M and it follows that K is finitely

generated by the finite set of generators of N together with t.

The embedding < q >→ Q yields a surjection ρ : S(Q,< q >)c → S(< q >) by

restriction of homomorphisms. The fact that v(q) > 0 for all [v] ∈ ΣcMab
tells us that

ρ(ΣcMab
) consists of a single point. Proposition 1.2 of [6] then says that

ρ(ΣcMab
) = ΣcM1

where M1 is Mab regarded as a < q >-module. Therefore σ(K) = ΣcM1
has one point.

This shows that σ(K) must be contained in an open hemisphere, so it follows,

again from Theorem 5.2 of [6], that K is constructible.

Thus each constructible soluble group can be obtained from a finitely generated

torsion-free nilpotent group by taking first an HNN extension to obtain K, then a

finite number of split extensions by infinite cyclic groups and finally a finite extension.

Observe that if such a group is automatic, so also is the subgroup of finite index

described in the previous sentence.

4. A characterization of G in terms of matrices

In this section and the remainder of the paper, we restrict to the special case in

which the group G described in Proposition 3.1 is a single ascending HNN extension

of a torsion-free nilpotent group. Then we can present G as

G = 〈t, a1, ..., al | a
t
i = xi (1 ≤ i ≤ l), yj = 1 (1 ≤ j ≤ p)〉,

where the xi and yj are words in {a±1
1 , ..., a±1

l } and the subgroup N = 〈a1, ..., al〉 is

a torsion-free nilpotent group of class c. Then G = N∗φ, where φ : N → N is the

homomorphism given by φ(w) = twt−1 for each w ∈ N .
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Lemma 4.1. Let (Ni)
q denote the subgroup of Ni generated by the set {xq | x ∈ Ni}.

For all i ≥ 1, there exists a natural number ki such that

(Ni)
ki ⊆ (φ(N))i .

Proof. Since φ is the restriction of a conjugation automorphism on G to the subgroup

N , the map φ is a monomorphism on N . Then Lemma 10 of [3] says that the index

|N : φ(N)| is finite. Theorem 4.4 of [12] can now be applied to show that the index

ji = |Ni : φ(Ni)| is also finite. Let ki = ji!, and suppose that x ∈ Ni. Then the

cosets φ(Ni), xφ(Ni),..., x
jiφ(Ni) cannot all be distinct, so xmφ(Ni) = xnφ(Ni) for

some 0 ≤ m < n ≤ ji, and therefore xd ∈ φ(Ni) where 0 < d = n − m < ji.

Then xki ∈ φ(Ni) also, so (Ni)
ki ⊆ φ(Ni). Since φ(Ni) = (φ(N))i, this shows that

(Ni)
ki ⊆ (φ(N))i.

Proposition 4.2. For each index i, the map φ induces a homomorphism χi : N/Ni →

N/Ni and a monomorphism ψi : N/I(Ni) → N/I(Ni).

Proof. That φ induces the homomorphisms χi and ψi follows from the easily verified

facts that φ(Ni) ⊆ Ni and φ(I(Ni)) ⊆ I(Ni).

Now uI(Ni) ∈ kerψi if and only if φ(u) ∈ I(Ni). This, in turn, happens if and

only if φ(uq) = φ(u)q ∈ Ni for some q. But then, by Lemma 4.1,

φ(uqki) ∈ (Ni)
ki ⊆ (φ(N))i = φ(Ni).

Hence, as φ is injective, uqki ∈ Ni and so u ∈ I(Ni). Thus ψi is injective.

Proposition 4.3. G is polycyclic (respectively, nilpotent-by-finite) if and only if

G/I(M ′) is polycyclic (respectively, nilpotent-by-finite).

Proof. One direction of the implications is clear. Recall that M is nilpotent, and note

that I(M ′) refers to IM (M ′).

Assume that G/I(M ′) is nilpotent-by-finite; say G1 is a normal subgroup of G

having finite index so that G1/I(M
′) is nilpotent. By (for example) Theorem 2.5 of

[12], the product of two nilpotent normal subgroups is again nilpotent and so we can

assume that G1 ≥ M . But then G1/M
′ is finite-by-nilpotent. Since it is also finitely

generated and metabelian, it is residually finite (see Theorem 1 of [13]) and so also

nilpotent-by-finite. Thus there is a normal subgroup G2 of finite index in G so that

G2/M
′ is nilpotent. Again we can assume that G2 ≥ M . Now we can apply a result

of Philip Hall (appearing as Lemma 3.7 bis of [12]) to show that G2 is nilpotent and

so G is nilpotent-by-finite.

Assume that G/I(M ′) is polycyclic. Since M/M ′ is of finite rank, its torsion-

subgroup is finite and so G/M ′ is polycyclic. Theorem 3 (special case (iii)) of [17] now

tells us that G is polycyclic.
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Because N is finitely generated, N/I(N ′) will be a finitely generated free abelian

group, of some rank m. Thus the monomorphism ψ2 : N/I(N ′) → N/I(N ′) can be

represented by a square m×m matrix which we shall denote by Aφ. The next step is

to transfer the properties of G into properties of this matrix.

Proposition 4.4. (a) G is nilpotent-by-finite if and only if every eigenvalue of Aφ has

absolute value 1.

(b) G is polycyclic if and only if the determinant of Aφ is ±1.

Proof. (a) The characteristic polynomial of Aφ is a monic polynomial with integer

coefficients. Thus the roots of this polynomial, that is the eigenvalues of Aφ, are

algebraic integers. Note that an algebraic integer is a root of unity if and only if all

of its conjugates are of absolute value one (see, for example, 9.B of [15]). Thus all

eigenvalues of Aφ are of absolute value 1 if and only if they are all roots of unity. This,

in turn, happens if and only if, for some natural number k, all of the eigenvalues of

Akφ are 1; that is, Akφ is unipotent. It is easy to check (see [18], Proposition 1.10 for

details) that Akφ is unipotent for some k if and only if the induced action of tk on each

quotient Mi/Mi+1 is trivial (that is, tk acts nilpotently on M), and hence G/I(M ′) is

nilpotent-by-finite. We can now invoke Proposition 4.3 to complete the argument.

(b) Observe that the determinant of Aφ is ±1 if and only if Aφ is invertible. This

will happen if and only if ψ2 is an automorphism. But N/I(N ′) is a finitely generated

abelian group and it is easily verified that an HNN-extension of the type we consider

here is polycyclic if and only if it is a split extension; that is, if ψ2 is an automorphism.

Thus the determinant of Aφ is ±1 if and only if G/I(M ′) is polycyclic and we can

again invoke Proposition 4.3 to complete the proof.

Since N/I(N ′) is a free abelian group of rank m, the generators {a1, ..., al} of

N can be chosen so that N/I(N ′) is the free abelian group with generators given by

{a1I(N
′), ..., amI(N

′)} where m ≤ l.

The following Proposition will be used in Sections 5 and 6.

Proposition 4.5. Suppose that one of the eigenvalues of the m ×m matrix Aφ has

absolute value greater than 1. Then for some index h ≤ m, there is an index j ≤ m

such that the sum µ(n) of the exponents of the occurrences of aj in any word over

{a1, ..., al} representing φn(ah) grows at least exponentially with n.

Proof. Let λ be an eigenvalue of Aφ with |λ| > 1. Over the field of complex numbers,

Aφ has an eigenvector v with eigenvalue λ which can be written as a linear combination

(with coefficients in C) of {a1I(N
′), ..., amI(N

′)}. Now Anφ(v) = λnv shows that the

absolute value of the coefficient of v grows exponentially with n. Therefore, for some h

and j, the absolute value of the coefficient of ajI(N
′) in the expression for Anφ(ahI(N

′))

must also grow at least exponentially. For this h and j the sum µ(n) of the exponents

of the occurrences of aj in any word over {a1, ..., al} representing φn(ah) grows at least

exponentially with n.

8



5. Proof of the Main Theorem when G is polycyclic

As in the last section, suppose that N is a nilpotent group of class c, G is an

ascending HNN extension G = N∗φ with stable letter t, and ψ2 is the homomorphism

induced by φ (defined in Section 4). In this section we will further assume that G is

polycyclic and that G is not virtually nilpotent.

Proposition 3.1 implies that we may assume in this case that N is a normal sub-

group of G. The homomorphism N → N given by w 7→ t−1wt is then φ−1, inducing

the homomorphism ψ−1
2 . Proposition 4.4 says that the matrix Aφ representing the

homomorphism ψ2 must have an eigenvalue with absolute value greater than 1, and

since ψ2 is invertible, the inverse homomorphism ψ−1
2 also must have an eigenvalue

with absolute value greater than 1.

Use Proposition 4.5 to choose elements b and d in N such that the lengths in

N of φn(b) and φ−n(d) both grow at least exponentially with n. Note that φn(b−1)

and φ−n(d−1) also both grow at least exponentially with n. Suppose that γ(n) is the

minimum of the lengths of these four elements in N .

Let w(n) = w ∈ F be defined by

w(n) := [bt
2n

, d, d, ..., d] =F [· · · [bt
2n

, d], d] · · ·], d]

where the element d occurs c times. Since N is nilpotent of class c, w =G 1. The

element w can be written as

w =F t
2nbt−2ndβ1t2nb−1t−2ndβ2 · · · t2nbt−2ndβ2c

−1t2nb−1t−2ndβ2c ,

where βi ∈ {±1}, β1 = 1, and β2c = −1.

To analyze the area of w, we will extend the geometric methods of [8]. The van

Kampen diagram for w can be viewed as a polygon with 2c segments, each consisting

of a sequence of edges labeled with t2nb±1t−2nd±1. Choosing one of the vertices of the

2c-gon as a basepoint and following the segments t2nbt−2ndβ1 , then t2nb−1t−2ndβ2 , etc.

around in a counterclockwise direction, we will refer to the segments in order as the

first, second, ... , and 2cth segment.

In [8], Bridson and Gersten showed that in this van Kampen diagram the boundary

edges labeled with t and t−1 must be connected to one another by (possibly empty) “t-

corridors”. A t-corridor consists of a pair of (possibly empty) words in the generators

{a1, ..., al} for N labeling the two sides of a row of rectangular 2-cells, with edges

connecting the two sides all labeled by t. These t-corridors may not cross one another,

and each connects a t along the boundary to a t−1 elsewhere on the boundary, in a

one-to-one fashion.

Consider the corridor corresponding to the first t in w. This t edge starts at the

basepoint and points in a counterclockwise direction, so the corridor must go to one of
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-1

t
-2n

dt
2n

First
Segment

t
-2n

b

d
-1

t
2n

t
2n

b
-1

b

t
-2n

d

word in the aiword in the ai

t
-1t

t
t

t
t

t

t
-2n+1

t
2n-1

Second  Segment

Third
Segment

Fourth  Segment

d
-1Base point

Figure 1. Van Kampen diagram for w when c = 2 and k = 3.

the copies of t−1 on the polygon. Suppose this corridor goes to the kth segment on the

polygon. See Figure 1 in the case when c = 2 and k = 3.

Since t-corridors are not allowed to cross, this means that all of the corridors

corresponding to the t edges in the second segment must go to segments between 1 and

k, inclusive. Therefore, every corridor starting at a t in the second segment may travel

at most k − 1 segments away from the second segment in either direction. Repeating

this procedure inductively shows that there is a segment for which all of the corridors

starting at a t in that segment go to either the same segment, or else the immediately

prior segment. Suppose this segment is the ith segment. See the example in Figure 2

in which c = 2, n = 2, and i = 3.

The corridors corresponding to the 2n copies of t in the ith segment must all go to

copies of t−1 in either the ith or (i−1)th segment. So at least n of them must go to the

same segment. In the first case, if n corridors starting at t’s in the ith segment go to

copies of t−1 in the ith segment, then the word tnb±1t−n along the diagram boundary

is connected by n t-corridors, and the word v along the outermost opposite side of the

n t-corridors is a word in the generators {a1, ..., al} for N representing tnb±1t−n; see

Figure 3. Recall that b was chosen so that the word v must have length at least γ(n).

Each of the edges in v has a 2-cell attached in the t-corridor above it. If C is the length

of the longest relator, then there are at least γ(n)/C 2-cells attached to the edges of v,
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t
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Figure 2. t-corridors and travel distances.

and so the area of this van Kampen diagram for w will be at least γ(n)/C. Similarly,

in the second case, if n corridors starting at t’s in the ith segment all go to copies of

t−1 in the (i− 1)th segment, then the word t−nd±1tn along the boundary is connected

by n t-corridors, and the word v along the opposite side of the n t-corridors is again a

word in the generators for N with length at least γ(n); see Figure 3. So in this case

also, the area of the diagram is at least γ(n)/C.

Thus the area of w = w(n) is at least γ(n)/C, where C is a constant and γ(n)

grows at least exponentially with n; so area(w(n)) grows at least exponentially with n.

Also, the length of w is (4n+2)2c, so length(w(n)) is a linear function of n. Therefore

the isoperimetric function for G must also grow at least exponentially. This proves the

Main Theorem in the case when G is polycyclic.

6. Proof of the Main Theorem when G is not polycyclic

As in the last two sections, suppose that G is an ascending HNN extension G =

N∗φ with stable letter t, where N is a torsion-free nilpotent group of class c. In this

section we will further assume that G is not polycyclic.
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Figure 3. The t-corridors of the ith segment.

6.1. Isoperimetric functions

Most of the proof in Section 5 for the polycyclic case can be applied to prove

that the isoperimetric function for the group G is at least exponential when G is not

polycyclic, also. The main difference appears in the choice of the element d used to

define the element w(n).

Since G is not nilpotent-by-finite, Propositions 4.4 and 4.5 say that there is an

element b in N such that the lengths in N of both φn(b) and φn(b−1) grow at least

exponentially with n; let γ(n) be the minimum of the lengths of these two elements in

N . Since G is not polycyclic, Proposition 4.4 also says that the determinant of Aφ is

not ±1, so φ is not onto. Then there is an element d of N such that d 6= φ(d′) for any

element d′ ∈ N , so t−1dt /∈ N . This implies that t−nd±1tn /∈ N for all n ≥ 1.

For this new choice of elements b and d, define the element w(n) = w ∈ F to be

w(n) := [bt
2n

, d, d, ..., d] =F [· · · [bt
2n

, d], d] · · ·], d]

12



as in the proof in Section 5. The rest of the proof in that section applies exactly as

before, to show that any van Kampen diagram for w must have an ith segment for

which the t-corridors corresponding to n copies of t in the ith segment either all go

to copies of t−1 in the ith segment or all go to copies of t−1 in the (i − 1)th segment

(see Figure 3). If n corridors starting at a t in the ith segment go to copies of t−1 in

the (i − 1)th segment, then the word labeling the bottom side of the t-corridors (see

the bottom section of Figure 3) must be a word in the generators ai of N representing

the element t−nd±1tn of G. However, with the new choice of d, t−nd±1tn /∈ N , so this

cannot happen. Therefore n copies of t in the ith segment must go to copies of t−1 in

the ith segment. As in the proof in Section 5, this implies that the area of w(n) must

be at least as large as the function γ(n)/C, which grows at least exponentially with n,

but the length of w(n) is linear, so the isoperimetric function for G must also grow at

least exponentially if G is not polycyclic.

6.2. Abelianized isoperimetric functions

Let χi and ψi be the homomorphisms induced by φ (defined in Section 4). In the

remainder of this section, we will denote the free abelian group N/I(N ′) by Ñ . The

generators {a1, ..., al} of N can be chosen so that Ñ ∼= Zm is the free abelian group

with generators {a1I(N
′), ..., amI(N

′)} where m ≤ l.

Since G is not polycyclic, Proposition 4.4 shows that the matrix Aφ must have an

eigenvalue with absolute value greater than 1, and the map ψ2 is not onto.

In this case |Ñ : ψ2(Ñ)| > 1. We can choose an integer k for which |Ñ : ψk2 (Ñ)| =

|Ñ : ψ2(Ñ)|k > 2c. The group

K = 〈s, a1, ..., al|a
s
i = φk(ai) (1 ≤ i ≤ l), yj(a1, ..., al) = 1 (1 ≤ j ≤ p)〉

is a finite index subgroup of the group

G = 〈t, a1, ..., al|a
t
i = φ(ai) (1 ≤ i ≤ l), yj(a1, ..., al) = 1 (1 ≤ j ≤ p)〉.

The abelianized isoperimetric functions for G and K are equivalent [4], so in order to

show that the abelianized isoperimetric function for G is at least exponential, it suffices

to show that the abelianized isoperimetric function for K is at least exponential. We

will replace G with K and φ with φk, then, so we may assume that |Ñ : ψ2(Ñ)| > 2c.

Lemma 6.1 There are elements b2, ..., bc+1 ∈ N such that the only element of the

support of (1 − bc+1)(1 − bc) · · · (1 − b2)I(N
′) which lies in ψ2(Ñ) is 1I(N ′).

(By the support of an element ε of a group ring, we mean those group elements

which occur in the expression for ε with non-zero coefficient.)
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Proof. Choose the bi by induction on i. First, since ψ2 is not onto, we can take b2
to be any element of N for which b2I(N

′) /∈ ψ2(Ñ). Now assume that b2, ..., bi−1 have

been chosen so that among the products
∏

j∈I

bjI(N
′),

with I ⊆ {2, ..., i− 1}, the only one of these products that is an element of ψ2(Ñ) is

the empty product. There are 2i−1 such products. Since |Ñ : ψ2(Ñ)| > 2c > 2i−1,

there must be an element bi which does not lie in the same coset as any of the products

above. The elements b2, ..., bc+1 chosen in this way have the required properties.

Let F be the free group on the set {t, a1, ..., al}. Let b1 be the element ah and let

d be the element aj in Proposition 4.5. Given any natural number n, let w(n) = w ∈ F

be the word

w := [bt
n

1 , b2, ..., bc+1].

Since N is nilpotent of class c and bi ∈ N for all i, the element w of F represents the

element 1 in the group G, so w can be written as a product of conjugates of relators

w =F

q(n)∏

k=1

(rεkk )
vk ,

where each rk is a relator, εk = ±1, and vk ∈ F . In order to find a lower bound for

the abelianized isoperimetric function for G, as in [4] we employ the Fox free differen-

tial calculus. The Fox derivatives of both of the expressions above for w need to be

computed and compared to get information on the size of q(n).

Let δ be the composition of the Fox partial derivative with respect to the generator

t, ∂
∂t

: F → ZF , with the canonical map ZF → ZG. Then δ(t) = 1 and δ(ai) = 0 for

each i, and for any words u, v, we have

δ(uv) = δ(u) + uδ(v),

δ(u−1) = −u−1δ(u),

δ(vu) = δ(uvu−1) = (1 − vu)δ(u) + uδ(v), and

δ([u, v]) = δ(uvu−1v−1) = (1 − vu)δ(u) + (u− [u, v])δ(v).

Applying these to the definition of w, we get

δ(w) =ZG (1 − b
[bt

n

1
,b2,...,bc]

c+1 )δ([bt
n

1 , b2, ..., bc]) + ([b1, ..., bc] − 1)δ(bc+1).

Now δ(bc+1) = 0 because bc+1 is a product of the generators ai, so the second term is

trivial. Inductively, we get

δ(w) =ZG (1 − b
[bt

n

1
,b2,...,bc]

c+1 )(1 − b
[bt

n

1
,b2,...,bc−1]

c )...(1− b
bt

n

1

2 )(1 − bt
n

1 )hn(t),
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where hn(t) =ZG 1 + t+ t2 + ...+ tn−1.

Using the expression of w as a product of conjugates of relators, we get

δ(w) =ZG

q∑

k=1

εkvkδ(rk).

The relators which include the generator t in their expression are of the form

Ri =F a
t
i(xi(a1, ..., al))

−1.

Then when rk = Ri, the Fox derivative δ(rk) = δ(Ri) = 1 − ati. For each 1 ≤ i ≤ l, let

gi(n) = gi ∈ ZG be the coefficient of δ(Ri) in the expression for δ(w). Then

δ(w) =ZG

l∑

i=1

gi(1 − ati).

Setting these two expressions for δ(w) equal, we get

(1− b
[bt

n

1
,b2,...,bc]

c+1 )(1− b
[bt

n

1
,b2,...,bc−1]

c )...(1− b
bt

n

1

2 )(1− bt
n

1 )hn(t) =ZG

l∑

i=1

gi(1− ati). (1)

We can extract fom each side of this equality, those elements of the support which

lie in N , together with their coefficients. Note that we have chosen each bi ∈ N . This

yields

(1 − b
[bt

n

1
,b2,...,bc]

c+1 )(1 − b
[bt

n

1
,b2,...,bc−1]

c )...(1− b
bt

n

1

2 )(1 − bt
n

1 ) =ZN

l∑

i=1

g′i(1 − ati) (2)

with g′i(n) = g′i ∈ ZN equal to the ZN terms in gi.

There is a natural homomorphism ZN → ZÑ induced by the map N → Ñ . The

images of the the left and right hand sides of equation (2) under this map can be

written

(1 − bc+1)(1 − bc) · · · (1 − b2)(1 − bt
n

1 ) =
ZÑ

l∑

i=1

g′i(1 − ati) (3)

where we denote cosets of I(N ′) by the same letters as their representatives.

We next restrict this equation to terms that lie in the subgroup ψ2(Ñ) from Lemma

6.1. In this case, equation (3) becomes

(1 − bt
n

1 ) =
Zψ2(Ñ)

l∑

i=1

g′′i (1 − ati), (4)
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with g′′i (n) = g′′i ∈ Zψ2(Ñ) for each i.

Since Ñ = Za1 ⊕ · · · ⊕Zam, there is a homomorphism ZÑ → Z〈d〉, sending ai to

1 for each i 6= j, and sending aj = d to itself. Restrict this homomorphism to Zψ2(Ñ).

Recall from Proposition 4.5 and the choice of b1 and d that the exponent sum of the

occurrences of d in bt
n

i is µ(n). In equation (4), this gives

(1 − dµ(n)) =Z〈d〉

l∑

i=1

g′′′i (1 − dνi), (5)

with g′′′i (n) = g′′′i ∈ Z〈d〉 and νi ∈ Z is the coefficient Aφ(j, i). Because the group ring

Z〈d〉 is an integral domain, we can divide through both sides by 1 − d and set d = 1;

the latter is effected more formally by applying the augmentation map. This yields

µ(n) =Z

l∑

i=1

g
(4)
i νi, (6)

with g
(4)
i (n) = g

(4)
i ∈ Z.

Since µ(n) grows exponentially with n, for some i, g
(4)
i (n) must also grow expo-

nentially large with n. Now g
(4)
i is constructed from the expression

w(n) =F

q(n)∏

k=1

(rεkk )
vk

of w as a product of conjugates of relators, by taking

g
(4)
i =

∑

k

εk,

where the sum ranges over all k such that rk = Ri and vk ∈ N . Therefore, the number

of summands of the form εkvkδ(rk) in the expression for δ(w), and the number of

factors of the form (rεkk )vk in the expression for w(n) as a product of conjugates of

relators, is at least µ(n), which grows exponentially with n. Since this expression for

w(n) was arbitrary, the number of summands in any expression of δ(w) and the number

of factors in any expression for w(n) as a product of conjugates of relators must be

at least µ(n) also. So the abelianized isoperimetric function (and hence also the Dehn

function) for the group G in this case is bounded below by an exponential function.

This completes the proof of the Main Theorem.
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