
HOMOLOGY AND CLOSURE PROPERTIES OF AUTOSTACKABLE

GROUPS

MARK BRITTENHAM, SUSAN HERMILLER, AND ASHLEY JOHNSON

Abstract. Autostackability for finitely presented groups is a topological property of the
Cayley graph combined with formal language theoretic restrictions, that implies solv-
ability of the word problem. The class of autostackable groups is known to include all
asynchronously automatic groups with respect to a prefix-closed normal form set, and all
groups admitting finite complete rewriting systems. Although groups in the latter two
classes all satisfy the homological finiteness condition FP∞, we show that the class of
autostackable groups includes a group that is not of type FP3. We also show that the
class of autostackable groups is closed under graph products and extensions.

1. Introduction

Autostackable groups are an extension of the notions of automatic groups and groups with
finite complete rewriting systems, introduced by Holt and the first two authors in [6]. An
autostackable structure for a finitely generated group implies a finite presentation, a solution
to the word problem, a recursive algorithm for building van Kampen diagrams, and tame
combability [5], [4]. Moreover, in contrast to automatic groups, the class of autostackable
groups includes all fundamental groups of 3-manifolds with a uniform geometry [6].

Autostackability is a topological property of the Cayley graph, together with a language
theoretic restriction on this property. More specifically, letG be a group with a finite inverse-
closed generating set A, and let Γ = Γ(G,A) be the associated Cayley graph. Denote the

set of directed edges in Γ by ~E, and the set of directed edge paths by ~P . For each g ∈ G and
a ∈ A, let eg,a denote the directed edge with initial vertex g, terminal vertex ga, and label
a; we view the two directed edges eg,a and ega,a−1 to have a single underlying undirected
edge in Γ.

A flow function associated to a maximal tree T in Γ is a function Φ : ~E → ~P satisfying
the properties that:

(F1) For each edge e ∈ ~E, the path Φ(e) has the same initial and terminal vertices as e.
(F2d) If the undirected edge underlying e lies in the tree T , then Φ(e) = e.

(F2r) The transitive closure <Φ of the relation < on ~E defined by
e′ < e whenever e′ lies on the path Φ(e) and the undirected edges underlying
both e and e′ do not lie in T ,

2010 Mathematics Subject Classification. 20F65; 20F10, 68Q42
Keywords: Rewriting system, autostackable, automatic group, homological finiteness condition, word
problem.

1

2 M. BRITTENHAM, S. HERMILLER, AND A. JOHNSON

is a well-founded strict partial ordering.

The flow function is bounded if there is a constant k such that for all e ∈ ~E, the path Φ(e)
has length at most k. That is, the map Φ fixes the edges lying in the tree T and describes
a “flow” of the non-tree edges toward the tree (or toward the basepoint); starting from a
non-tree edge and iterating this function finitely many times results in a path in the tree.

In order to place a language theoretic restriction on Φ, we use functions that convert

between paths and words. Define label : ~P → A∗ to be the function that maps each directed
path to the word labeling that path. For each element g ∈ G, let yg denote the label of the
unique geodesic (i.e., without backtracking) path in the maximal tree T from the identity
element 1 of G to g, and let N = NT := {yg | g ∈ G} denote the set of these (unique)

normal forms. Define path : N × A∗ → ~P by path(yg, w) := the path in Γ that starts at g
and is labeled by w.

Definition 1.1. [5, 6] Let G be a group with a finite inverse-closed generating set A.

(1) The group G is stackable over A if there is a bounded flow function on a maximal
tree in the associated Cayley graph.

(2) The group G is algorithmically stackable over A if G admits a bounded flow function
Φ for which the graph

graph(φ) := {(yg, a, label(Φ(path(yg, a)))) | g ∈ G, a ∈ A}

of the stacking map φ := label ◦Φ ◦ path is computable.
(3) The group G is autostackable over A if G has a bounded flow function Φ for which

the graph of the associated stacking map is synchronously regular.

A stackable group G over a finite generating set A is finitely presented, with finite presen-
tation RΦ = 〈A | {φ(y, a) = a | y ∈ NT , a ∈ A}〉 associated to the flow function Φ. The set
NT is a prefix-closed set of normal forms for G. A bounded flow function is equivalent to
a bounded complete prefix-rewriting system for G over A, for which the irreducible words
are exactly the elements of the set NT . (See Section 2.2 for definitions of rewriting and
prefix-rewriting systems.) Moreover, a group is autostackable if and only if it admits a
synchronously regular bounded complete prefix-rewriting system. Algorithmic stackability
(and hence also autostackability) implies a solution of the word problem; the set of rules of
the associated prefix-rewriting system are computable, and give an algorithm to rewrite any
word to the normal form representing the same group element. The class of autostackable
groups includes all groups that are asynchronously automatic with respect to a prefix-closed
set of (unique) normal forms, and all groups that admit a finite complete rewriting system.
The class of stackable groups also includes all almost convex groups. For proofs of these
and other results on autostackable groups, see [5] and [6].

Section 2 of this paper contains notation and definitions used throughout the paper,
including background on language theory.

In Section 3, we show that the classes of autostackable, stackable, and algorithmically
stackable groups are all closed under taking graph products (including free and direct prod-
ucts), extensions, and finite index supergroups (i.e., groups containing a finite index sub-
group in the class). For the two properties that motivated autostackability, we note that

HOMOLOGY AND CLOSURE PROPERTIES OF AUTOSTACKABLE GROUPS 3

the class of groups admitting a finite complete rewriting system is closed under all three of
these constructions ([16], [17], [15]), but the class of automatic groups is only closed under
graph products and finite index supergroups ([16], [3]); in particular, a nilpotent group
that is not virtually abelian is not automatic [11, Theorem 8.2.8]. The closure results in
Section 3 show that any extension of a automatic group by another automatic group, such
that the normal forms in both cases are prefix-closed (and unique), is autostackable.

The closure results of Section 3 leave open the question of whether the classes of au-
tostackable, stackable, and algorithmically stackable groups are closed under taking finite
index subgroups. Although it is known that finite index subgroups of automatic groups are
automatic [3], it is an open question whether every finite index subgroup of a group with a
finite complete rewriting system also has a finite complete rewriting system [8, p. 41], [15,
Question 2], [23], or an autostackable structure.

In Section 4 we show that the class of autostackable groups includes groups with a wider
range of homological finiteness properties than those of automatic groups or groups with
finite complete rewriting systems. A group G has homological type FPn if there is a partial
projective resolution of length n, by finitely generated ZG-modules, of the module Z (with
trivial G action). In the case that G has type FPn for all n ∈ N, then G is said to be of type
FP∞. Alonso [1] has shown that all groups that admit a bounded combing, including all
automatic groups, have type FP∞. Groups with finite complete rewriting systems also are
of type FP∞; this has been shown with a variety of proofs in papers by Anick [2], Brown [7],
Groves [14], Farkas [12], Kobayashi [20], and Lafont [21]; see Cohen’s survey [8] for more
details.

Stallings [25] showed that the group

G := 〈a, b, c, d, s | [a, c] = [a, d] = [b, c] = [b, d] = 1, [s, ab−1] = [s, ac−1] = [s, ad−1] = 1〉

does not have the finiteness property FP3. The results above show that this group cannot
be automatic, nor can it admit a finite complete rewriting system. Moreover, Elder and the
second author have shown that this group does not satisfy the almost convex property [9],
nor the weaker minimally almost convex property [10], on this generating set. However, in
Section 4, we show in Theorem 4.1 that this group is autostackable.

Corollary 4.2. There is an autostackable group that does not satisfy the homological
finiteness condition FP3.

Stallings’ group also provides an example of a group that cannot have a finite complete
rewriting system, but does admit a bounded complete prefix-rewriting system.

2. Notation and background

Throughout this paper, let G be a group with a finite inverse-closed generating set A.
Also throughout the paper we assume that no element of a generating set represents the
identity element of the group, and no two elements of a generating set represent the same
element of the group.

A set N of normal forms for G over A is a subset of A∗ such that the restriction of the
canonical surjection ρ : A∗ → G to N is a bijection. As in Section 1, the symbol yg denotes

4 M. BRITTENHAM, S. HERMILLER, AND A. JOHNSON

the normal form for g ∈ G. By slight abuse of notation, we use the symbol yw to denote
the normal form for ρ(w) whenever w ∈ A∗.

Let 1 denote the identity of G, and let λ denote the empty word in A∗. For a word
w ∈ A∗, we write w−1 for the formal inverse of w in A∗, and let l(w) denote the length of
the word w. For words v,w ∈ A∗, we write v = w if v and w are the same word in A∗, and
write v =G w if v and w represent the same element of G.

Given a word w ∈ A∗, let last(w) denote the last letter in A of the word w; in the case
that w = λ contains no letters, then we let last(w) := λ. For any subset Z ⊂ A, we use
sufZ(w), to denote the maximal suffix of w that lies in Z∗; here sufZ(w) := λ if w does not
end with a letter in Z.

Let Γ be the Cayley graph of G with respect to A. If N is a prefix-closed set of normal
forms for G over A, then N determines a maximal tree T in Γ, namely the set of all
(undirected) edges underlying edge paths in Γ starting at the vertex 1 and labeled by words
in N .

2.1. Formal language theory. A language over a finite set A is a subset of the set A∗ of
all finite words over A. The set A+ denotes the language A∗ \ {λ} of all nonempty words
over A.

The regular languages over A are the subsets of A∗ obtained from the finite subsets of A∗

using finitely many operations from among union, intersection, complement, concatenation
(S · T := {vw | v ∈ S and w ∈ T}), and Kleene star (S0 := {λ}, Sn := Sn−1 · S and
S∗ := ∪∞

n=0S
n). The class of regular languages is closed under both image and preimage

via monoid homomorphisms (see, for example, [18, Theorem 3.5]). The class of regular sets
is also closed under quotients ([18, Theorem 3.6]); we write out a special case of this in the
following lemma for use in later sections of this paper.

Lemma 2.1. [18, Theorem 3.6] If A is a finite set, L ⊆ A∗ is a regular language, and
w ∈ A∗, then the quotient language L/w := {x ∈ A∗ | xw ∈ L} is also a regular language.

Let $ be a symbol not contained in A. The set An := (A∪{$})n \{($, ..., $)} is the padded
n-tuple alphabet derived from A. For any n-tuple of words u = (u1, ..., un) ∈ (A∗)n, write
ui = ai,1 · · · ai,ji with each ai,m ∈ A for 1 ≤ i ≤ n and 1 ≤ m ≤ ji. LetM := max{j1, ..., jn},
and define ũi := ui$

M−ji , so that each of ũ1, ..., ũn has length M . That is, ũi is a word
over the alphabet (A ∪ {$})∗, and we can write ũi = ci,1 · · · ci,M with each ci,m ∈ A ∪ {$}.
The word µ(u) := (c1,1, ..., cn,1) · · · (c1,M , ..., cn,M) is the padded word over the alphabet An

induced by the n-tuple (u1, ..., un) in (A∗)n.

A subset L ⊆ (A∗)n is called a synchronously regular language if the padded extension set
µ(L) := {µ(u) | u ∈ L} of padded words associated to the elements of L is a regular language
over the alphabet An. Closure of the class of synchronously regular languages under finite
unions and intersections follows from these closure properties for regular languages. The
following two lemmas on synchronously regular languages will also be used in later sections.

Lemma 2.2. [6, Lemma 2.3] If L1, ..., Ln are regular languages over A, then their Cartesian
product L1 × · · · × Ln ⊆ (A∗)n is synchronously regular.

HOMOLOGY AND CLOSURE PROPERTIES OF AUTOSTACKABLE GROUPS 5

Lemma 2.3. [11, Theorem 1.4.6] If L ⊂ (A∗)n is a synchronously regular language, then
the projection on the first coordinate given by the set proj1(L) := {u | ∃(u, u2, ..., un) ∈ L}
is a regular language over A.

See [11] and [18] for more information about regular and synchronously regular languages.

2.2. Rewriting systems. The definitions and results in this section can be found in the
text [24] by Sims.

A complete rewriting system for a group G consists of a set A and a set of “rules”
R ⊆ A∗ × A∗ (with each (u, v) ∈ R written u → v) such that G is presented as a monoid
by G = Mon〈A | u = v whenever u → v ∈ R〉, and the rewritings of the form xuy → xvy

for all x, y ∈ A∗ and u→ v in R, with transitive closure
∗
→, satisfy:

(1) There is no infinite chain w → x1 → x2 → · · · of rewritings.
(2) Whenever there is a pair of rules of the form rs→ v and st→ w [respectively, s→ v

and rst→ w] in R with r, s, t, v, w ∈ A∗ and s 6= λ, then there are rewritings vt
∗
→z

and rw
∗
→z [respectively, rvt

∗
→z and w

∗
→z] for some z ∈ A∗.

The rewriting system is finite if the sets A and R are both finite.

The pairs of rules in item (2) are called critical pairs, and when property (2) holds, the
critical pairs are said to be resolved. The set Irr(R) of irreducible words (that is, words that
cannot be rewritten) is a set of normal forms for the group G presented by the complete
rewriting system.

A complete prefix-rewriting system for a group G consists of a set A and a set of rules
R ⊆ A∗ ×A∗ (with each (u, v) ∈ R written u→ v) such that G is presented (as a monoid)
by G = Mon〈A | u = v whenever u → v ∈ R〉, and the rewritings uy → vy for all y ∈ A∗

and u → v in R satisfy: (1) There is no infinite chain w → x1 → x2 → · · · of rewritings,
and (2) each g ∈ G is represented by exactly one irreducible word over A. (The difference
between a prefix-rewriting system and a rewriting system is that rewritings of the form
xuy → xvy with x ∈ A∗ \ {λ} and u → v ∈ R are allowed in a rewriting system, but only
rewritings uy → vy are allowed in a prefix-rewriting system.) The prefix-rewriting system
is bounded if A is finite and there is a constant k such that for each pair (u, v) in R there
are words s, t, w ∈ A∗ such that u = ws, v = wt, and l(s) + l(t) ≤ k.

3. Closure properties of autostackable groups

3.1. Graph products.

In this section we prove the first of the closure properties, that each of the stackability
properties is preserved by the graph product construction.

Given a finite simplicial graph Λ (with no loops or multiple edges) with vertices v1, ..., vn,
such that each vertex vi is labeled by a group Gi, the associated graph product is the quotient
GΛ of the free product of the groups Gi by the relations that elements of vertex groups
corresponding to adjacent vertices in Λ commute. Special cases include the free product (if
Λ is totally disconnected) and direct product (if Λ is complete) of the groups Gi.

6 M. BRITTENHAM, S. HERMILLER, AND A. JOHNSON

For each 1 ≤ i ≤ n, let Ai be a finite inverse-closed generating set for the vertex group Gi.
In this section we use the generating set A := ∪n

i=1Ai of GΛ for our constructions. For each
i, we let Ii ⊆ {1, ..., n} denote the set of indices k such that vk and vi are adjacent in Λ. This
set Ii can be partitioned into the subsets I>i := Ii∩{i+1, ..., n} and I<i := Ii∩{1, ..., i−1}.
Let Ci := Ai ∪ {I,≻}, where I and ≻ denote distinct letters not in A, and define a monoid
homomorphism πi : A

∗ → C∗
i by defining

πi(a) :=





a if a ∈ Ai

≻ if a ∈ Ak for some k ∈ I>i
λ if a ∈ Ak for some k ∈ I<i
I if a ∈ Ak for some k ∈ I \ (Ii ∪ {i}).

Lemma 3.1. Let GΛ be a graph product of the groups Gi = 〈Ai〉, let A := ∪n
i=1Ai, and

suppose that for each index i the set Ni is a prefix-closed set of normal forms for Gi over
the generators Ai. Then the language

NΛ := ∩n
i=1π

−1
i ((Ni ≻

∗
I)∗Ni ≻

∗)

is a prefix-closed set of normal forms for GΛ.

Proof. Over the larger generating set X := ∪n
i=1Xi of GΛ where each Xi := Gi \ {1Gi

}, we
note that the set of rules R := R′ ∪R′′, where R′ := {gh → (gh) | g, h ∈ Xi, i ∈ {1, ..., n}}
and R′′ := {gwh → hgw | g ∈ Xi, h ∈ Xj, j ∈ I<i , w ∈ (∪k∈IjXk)

∗}, is a complete rewriting
system for G. Here (gh) denotes the element of Xi corresponding to the product gh in
Gi if gh 6=Gi

1Gi
, and (gh) denotes the empty word λ if gh =Gi

1Gi
. Indeed, if we let

S := {s1, ..., sn} have the total ordering defined by si < sj whenever i < j, and define the
monoid homomorphism α : X∗ → S∗ by α(g) := si for each g ∈ Xi, then each rewriting
xuy → xvy with x, y ∈ X∗ and u → v ∈ R satisfies the property that α(xuy) >sl α(xvy),
where >sl is the (well-founded) shortlex ordering on S∗, and so there cannot be an infinite
sequence of rewritings. It is also straightforward to check that the critical pairs are resolved
(see Section 2.2 for this terminology), and so this is a complete rewriting system. Hence
the set Irr(R) of irreducible words for this system is a set of normal forms for GΛ over X.

Now let β : X∗ → A∗ be the monoid homomorphism mapping each g ∈ Xi to the normal
form β(g) of g in Ni. Then β(Irr(R)) is a set of normal forms for GΛ over A.

Given a word w ∈ Irr(R), the image πi(β(w)) lies in (Ni ≻
∗
I)∗Ni ≻

∗ for all i, by the
choice of the rewriting rules in R; hence, β(Irr(R)) ⊆ NΛ. In the other direction, for any
word x ∈ NΛ, we can consider the word x as an element of X∗ using the inclusion of A in X.
Since πi(x) lies in (Ni ≻

∗
I)∗Ni ≻

∗ for each i, the only rules of the rewriting system R that
can be applied to x are in the set R′. Since each element of Gi is represented by only one
word in Ni, and the normal form set Ni is prefix-closed, it follows that nonempty subwords
of words in Ni cannot represent the trivial element of Gi. Consequently any sequence of
rewritings of x using the rules in R′ may only replace words in X+

i (that is, nonempty

words over Xi) with words again in X+
i . Hence any further rewritings from the system R

again can only apply rules in R′, resulting in an irreducible word x′. Applying β returns
the original word β(x′) = x. Therefore NΛ = β(Irr(R)).

HOMOLOGY AND CLOSURE PROPERTIES OF AUTOSTACKABLE GROUPS 7

Finally, prefix-closure of the setsNi yields prefix-closure of the languages (Ni ≻
∗
I)∗Ni ≻

∗

for each i, which in turn implies prefix-closure of the language NΛ. �

We note that the normal forms Irr(R) in Lemma 3.1 are the same as those developed by
Green in [13], and the set NΛ is also constructed using alternative methods in [16] and [19].
Next we use the normal form set NΛ to prove the closure properties for graph products.

Theorem 3.2. For 1 ≤ i ≤ n let Gi be an autostackable [respectively, stackable, algorithmi-
cally stackable] group on a finite inverse-closed generating set Ai. Then any graph product
GΛ of these groups with the generating set A := ∪n

i=1Ai is also autostackable [respectively,
stackable, algorithmically stackable].

Proof. Let Ni, Φi, and φi be the normal form set over Ai, the bounded flow function, and
the stacking map for the group Gi, respectively. To streamline the discussion, for each
1 ≤ i ≤ n we denote the language (Ni ≻

∗
I)∗Ni ≻

∗ by Li. Also let NΛ be the normal form
set for GΛ from Lemma 3.1, and as usual denote the normal form for g ∈ GΛ by yg. Let

Γ be the Cayley graph of GΛ over A, with sets ~E of directed edges and ~P of directed edge
paths, and let T be the maximal tree in Γ corresponding to this set of normal forms.

Step 1: Stackable.

We begin by defining a function φ : NΛ ×A→ A∗ as follows. Recall from Section 2 that
for any word w ∈ A∗, last(w) denotes the last letter of the word w, and sufAi

(w), which we
shorten to sufi(w) throughout this proof, denotes the maximal suffix of w in the letters of
the subset Ai of A. Now for each yg ∈ NΛ and a ∈ Ak we define

φ(yg, a) :=

{
φk(sufk(yg), a) if πk(yg) /∈ C

∗
k ≻

last(yg)
−1alast(yg) if πk(yg) ∈ C

∗
k ≻ .

We also let Φ : ~E → ~P denote the function Φ(eg,a) := path(g, φ(yg , a)).

It follows immediately from the definition of Φ that property (F1) of the definition of
flow function holds.

To check property (F2d), consider any directed edge e = eg,a whose underlying undirected
edge lies in the tree T . Then either yga or ygaa

−1 is an element of NΛ. Let k be the
index such that a ∈ Ak. Now either πk(yga) = [πk(yg)]a ∈ [(Nk ≻∗

I)∗Nk ≻∗]a ⊆ Lk

or πk(ygaa
−1) = πg(yg) ∈ Lka

−1 ∩ Lk, and so in both cases we have πk(yg) /∈ C∗
k ≻.

Hence φ(yg, a) = φk(sufk(yg), a). Write πk(yg) = vw where v ∈ (Nk ≻∗
I)∗ and w ∈ Nk.

Since πk(b) = λ for all b ∈ ∪i∈I<
k
Ai, then in the word yg, the letters from w may be

interspersed with, or precede, such a letter b. However, if w 6= λ and b is the first letter in
∪i∈I<

k
Ai occurring after the first letter of w in yg, and we let a′ be the letter from w that

immediately precedes b in yg, then for the index i such that b ∈ Ai, the word πi(a
′b) = ≻ b

is a subword of πi(yg), giving a contradiction. This shows that sufk(yg) = w. Now we have
that either yga ∈ NΛ, in which case sufk(yg)a = wa ∈ Nk, or else yg = ygaa

−1, in which
case sufk(yg) ends with the letter a−1. Since the flow function Φk satisfies property (F2d),
then φk(sufk(yg), a) = a. Therefore Φ(e) = e, and (F2d) holds for Φ.

8 M. BRITTENHAM, S. HERMILLER, AND A. JOHNSON

Next we turn to property (F2r). We define a function ψ : ~E → N
2 as follows. Let eg,a ∈ ~E,

and let k be the index such that a ∈ Ak. Define ψ(eg,a) := (l(yg), 0) if πk(yg) ∈ (Ck)
∗ ≻,

and ψ(eg,a) := (0, dclk(sufk(yg), a)) if πk(yg) /∈ (Ck)
∗ ≻, where the descending chain length

dclk(w, a) denotes the maximum length of a descending chain ew,a >Φk
e1 >Φk

e2 · · · >Φk
en

of edges for the well-founded ordering obtained from the flow function Φk. Let <N2 be the
lexicographic ordering on N

2; that is, (a, b) <N2 (c, d) if either a < c or a = c and b < d,
where we use the standard ordering on N. Note that <N2 is a well-founded strict partial
ordering. In order to show that property (F2r) holds for the function Φ, it suffices to show
that whenever e′ <Φ e, then ψ(e

′) <N2 ψ(e). Making use of the fact that the ordering <Φ is
a transitive closure of another relation, it then suffices to show that whenever e′ is an edge
of Φ(e) and neither e′ nor e is in the tree T , then ψ(e′) <N2 ψ(e).

Now suppose that e = eg,a is any element of ~E and the undirected edge of Γ underlying
eg,a does not lie in T , and let k be the index such that a ∈ Ak. In this case the words yga
and ygaa

−1 are not in the normal form set NΛ. Note that for any index i 6= k, the image
of yga under πi has the form πi(yga) = πi(yg)πi(a) where πi(yg) ∈ Li and πi(a) ∈ {≻, λ, I},
and therefore also πi(yga) ∈ Li. Then since yga /∈ NΛ, we must have πk(yga) = πk(yg)a /∈
Lk = (Nk ≻∗

I)∗Nk ≻∗. We treat the cases in which πk(yg) does or does not end with the
letter ≻ separately.

Suppose first that πk(yg) does not end with ≻. Then πk(yg) ∈ (Nk ≻∗
I)∗Nk; write

πk(yg) = uv for u ∈ (Nk ≻∗
I)∗ and v ∈ Nk. Applying the discussion in the proof of (F2d)

above, then v = sufk(yg); hence we can write yg = ũv. Now ψ(e) = (0, dclk(sufk(yg), a)) =
(0, dclk(v, a)) where dclk(v, a) is the maximum length of a descending chain of edges starting
from ev,a for the flow function Φk, and since πk(yga) /∈ Lk and πk(yg) does not end with
a−1, the descending chain length satisfies dclk(v, a) > 0. For any edge e′ in the path
Φ(e), we have e′ = eũv′,c for some v′ ∈ Nk and c ∈ Ak such that ev′,c is an edge of the
path Φk(ev,a). Note that, as above, sufk(ũv

′) = v′. In the case that e′ does not lie in
the tree T , then ev′,c <Φk

ev,a and πk(ũv
′) = πk(ũ)v

′ ∈ Lk ∩ (C∗
k \ C∗

k ≻), and hence
ψ(e′) = (0, dclk(sufk(yũv′), c)) = (0, dclk(v

′, c)) <N2 (0, dclk(v, a)) = ψ(e).

On the other hand suppose that πk(yg) ends with ≻. The path Φ(e) contains three
directed edges e1 := eg,b−1 , e2 := egb−1,a, and e3 := egb−1a,b where b := last(yg). Note that
yg = ygb−1b, and l(yg) ≥ 1. The undirected edge underlying e1 lies in the tree T . If e2 does
not lie in the tree T , then ygb−1a /∈ NΛ, and so the argument (two paragraphs) above also
shows that πk(ygb−1a) /∈ Lk. In that case, either πk(ygb−1) ends with the letter ≻, in which
case ψ(e2) = (l(ygb−1), 0) = (l(yg) − 1, 0) <N2 (l(yg), 0) = ψ(e), or else πk(ygb−1a) does not
end with ≻, in which case ψ(e2) = (0, dclk(sufk(ygb−1), a)) <N2 (l(yg), 0) = ψ(e). So in all
cases, ψ(e2) <N2 ψ(e).

Finally, we show that edge e3 lies in the tree T . First note that since πk(yg) ∈ (Nk ≻∗

I)∗Nk ≻+, we can decompose the normal form for g as yg = u1u2u3b where πk(u1) ∈ (Nk ≻∗

I)∗ and the length of the prefix u1 is maximal with respect to this property, u2 ∈ Nk

(including the possibility that u2 is the empty word λ), πk(u3b) ∈ ≻+, and the first letter
c of u3b satisfies πk(c) = ≻. Note that gb−1ab =GΛ ga =GΛ u1yu2au3b; we claim that
u1yu2au3b ∈ NΛ. Indeed, for the index k we have πk(u1yu2au3vb) = πk(u1)yu2aπk(u3b) ∈
(Nk ≻∗

I)∗Nk ≻+⊆ Lk. For each index i 6= k, the word πi(u1yu2au3vb) is obtained from

HOMOLOGY AND CLOSURE PROPERTIES OF AUTOSTACKABLE GROUPS 9

πi(yg) by removal of the subword πi(u2) and insertion of the subword πi(yu2a); we consider
these steps separately. The word πi(u1u3b) is obtained from πi(yg) by removing a subword
from ≻∗ ∪ I

+. Deleting a ≻∗ subword preserves membership in the language Li. In the case
that πi(u2) ∈ I

+, then the vertices vi and vk of Λ are not adjacent, and πk(d) = I for all
d ∈ Ai; hence no letter of u3b lies in Ai. Removal of a I

+ subword from a suffix in {≻, I}∗

also preserves membership in Li. Hence we have πi(u1u3b) ∈ Li. Next, πi(u1yu2au3b) is
obtained from πi(u1u3b) by the insertion of a subword from ≻∗ ∪ I

+, and insertion of such a
subword preserves membership in Li unless the inserted word is nonempty and immediately
precedes a letter lying in Ai. In the case that πi(yu2a) ∈ ≻+, we have i < k. Moreover, the
first letter c of u3b satisfies πk(c) = ≻, and so c ∈ Al for an index l satisfying k < l. Then
i < l, and so the word πi(yu2a) is inserted immediately before the letter πi(c) ∈ {≻, I}. In
the case that πi(yu2a) ∈ I

+, again the vertices vi and vk are not adjacent and no letter of
Ai appears in u3b, so no I is inserted preceding a letter of Ai. Thus πi(u1yu2au3b) ∈ Li,
completing the proof of the claim. Since the normal form ygb−1ab = u1yu2au3b ends with
the letter b, then the edge e3 lies in T .

Thus we have that for any edge e′ in the path Φ(e), either e′ lies in the tree T , or
else ψ(e′) <N2 ψ(e), as required. This completes the proof of (F2r) and the proof that
Φ is a flow function associated to the tree T in the Cayley graph for GΛ over A. It
follows from the construction of Φ that this flow function is bounded by the constant
max{3, bd(Φ1), ..., bd(Φn)}, where for each index i, bd(Φi) denotes the bound on the flow
function Φi.

Step 2: Autostackable.

Now suppose further that the set graph(φk) is synchronously regular for all indices 1 ≤
k ≤ n. Following the piecewise description of the stacking function φ associated to Φ given
in Step 1 above, its graph can be written in the form

graph(φ) = ∪n
k=1 ∪a∈Ak

[(∪x∈im(φk) graph(φ) ∩ (A∗ × {a} × {x}))

∪(∪i∈Ik ∪b∈Ai
graph(φ) ∩ (A∗ × {a} × {b−1ab}))]

= (∪k∈{1..n}, a∈Ak, x∈{φk(y,a)|y∈Nk} Lk,a,x × {a} × {x})

∪(∪k∈{1..n}, a∈Ak, i∈Ik, b∈Ai
L′
k,a,b × {a} × {b−1ab})

where

Lk,a,x = {yg ∈ NΛ | πk(yg) /∈ C∗
k ≻ and φk(sufk(yg), a) = x}, and

L′
k,a,b = {yg ∈ NΛ | πk(yg) ∈ C∗

k ≻ and last(yg) = b}

Since the class of synchronously regular languages is closed under finite unions, and
all finite sets are regular, then Lemma 2.2 shows that in order to prove that graph(φ) is
synchronously regular, it suffices to show that the languages Lk,a,x and L′

k,a,b are regular.

We begin by considering the language NΛ of normal forms. Lemma 2.3 says that the
projection of graph(φk) on the first coordinate, which is the language Nk of normal forms
for the group Gk, is regular. Since regular languages are closed under concatenation and
Kleene star, then Lk = (Nk ≻∗

I)∗Nk ≻∗ is also regular. Finally closure of regular languages
under homomorphic inverse image and finite intersection implies that NΛ is also regular.

10 M. BRITTENHAM, S. HERMILLER, AND A. JOHNSON

Now L′
k,a,b = NΛ ∩ π−1

k (C∗
k ≻)∩A∗b. Since the class of regular languages is closed under

Kleene star, concatenation, and homomorphic preimage, then each of the three sets in this
intersection is regular, and so L′

k,a,b is a regular language.

The proof in Step 1 above shows that for any yg ∈ Lk,a,x ⊆ NΛ ∩ π−1
k (C∗

k \ C∗
k ≻), the

word yg can be written in the form yg = y′sufk(yg) where πk(y
′) ∈ (Nk ≻∗

I)∗. Then

Lk,a,x = NΛ ∩ π−1
k ((Nk ≻∗

I)∗)Nk,a,x where Nk,a,x := proj1(graph(φk)∩ (A∗
k ×{a}× {x})) is

the set of all words w ∈ Nk such that φk(w, a) = x. Since graph(φk) is synchronously regular
and the intersection of two synchronously regular languages is synchronously regular, then
applying Lemma 2.3 shows that the language Nk,a,x is regular. Then using closure properties
of regular languages, we also have that Lk,a,x is regular.

Therefore the set graph(φ) is synchronously regular, and GΛ is autostackable over A.

Step 3: Algorithmically stackable.

The proof in this case is similar to the argument in Step 2. �

3.2. Extensions.

We continue the investigation into closure properties with the extension of a group K by
a group Q.

Theorem 3.3. Let 1 → K
i
→ G

q
→ Q → 1 be a short exact sequence of groups and

group homomorphisms. If K and Q are autostackable [respectively, stackable, algorithmi-
cally stackable] groups on finite inverse-closed generating sets A and B, respectively, and

B̂ ⊆ G is an inverse-closed subset of G that bijects via q to B, then the group G with

the generating set i(A) ∪ B̂ is also autostackable [respectively, stackable, algorithmically
stackable].

Proof. Let NK , ΦK , and φK be the normal form set, bounded flow function, and associated
stacking map for K over A, and similarly let NQ, ΦQ, and φQ be the normal form set,
bounded flow function, and associated stacking map for Q over B. Let K = 〈A|R〉 and
Q = 〈B|S〉 be the finite presentations obtained from these flow functions. By slight abuse
of notation, we will consider the homomorphism i to be an inclusion map, and A,K ⊆ G,

so that we may omit writing i(·). Let C := A ∪ B̂.

For each b ∈ B, there is a unique element b̂ ∈ B̂ with q(b̂) = b. For each word w =

b1 · · · bn ∈ B∗, we define hat(w) := b̂1 · · · b̂n. Let ¯ be the map from B̂∗ to B∗ that reverses

the map hat : B∗ → B̂∗; that is, for any letter c ∈ B̂, c = q(c) ∈ B, and for any word

v = c1 · · · cn ∈ B̂∗, then v = c1 · · · cn. Define

NG := NKhat(NQ).

Since Q ∼= G/K and the set hat(NQ) ⊂ B̂∗ bijects (via q) to Q, the language hat(NQ) is a
set of coset representatives for G/K, and every element g of G can be written uniquely in
the form g = kp for some k ∈ K and p ∈ hat(NQ); that is, the set NG is a set of normal
forms for G over the finite inverse-closed generating set C.

HOMOLOGY AND CLOSURE PROPERTIES OF AUTOSTACKABLE GROUPS 11

Let Γ be the Cayley graph of G with respect to C, and let ~E and ~P be the sets of directed
edges and directed paths in Γ. Since both NK and NQ are prefix-closed, the language NG

is prefix-closed as well, and so NG determines a maximal tree T in Γ.

Step 1: Stackable.

For each g ∈ G, let yg denote the normal form of g in NG. We also use the notation
yg = ugtg where ug ∈ NK and tg ∈ hat(NQ). Note that G has the presentation

G = 〈C | R ∪ {hat(s) = uhat(s) | s ∈ S} ∪ {b̂a = u
b̂ab̂−1 b̂ | a ∈ A, b̂ ∈ B̂}〉;

in this step we use the relations from this presentation to construct a flow function for G
over C.

Define a function φ : NG × C → C∗ by

φ(yg, c) =





φK(yg, c) if c ∈ A and yg ∈ A∗

last(yg)
−1ulast(yg)clast(yg)−1 last(yg) if c ∈ A and yg /∈ A∗

uc(hat(φQ(q(g),q(c))))−1hat(φQ(q(g), q(c))) if c ∈ B̂.

Also define Φ : ~E → ~P by Φ(eg,c) := path(yg, φ(yg, c)).

It follows immediately from the definition of Φ and the presentation of G that property
(F1) of the definition of flow function holds. To check property (F2d), suppose that e = eg,c
is any edge in the tree T ; then either ygc or ygcc

−1 lies in NG. If c ∈ A, then the definition of
NG implies that yg ∈ A

∗, and either ygc or ygcc
−1 lies in NK . Then φG(yg, c) = φK(yg, c) =

c, and so Φ(e) = e. If instead c ∈ B̂, then either ugtgc or ugctgcc
−1 lies in NG. Now tg ∈ NQ,

c ∈ B, and either tgc or tgcc
−1 lies in NQ. Hence property (F2d) for ΦQ implies that

φQ(q(g), q(c)) = φQ(tg, c) = c, and so hat(φQ(q(g), q(c))) = c. Note that ucc−1 = u1 = λ.
Then again we have φ(yg, c) = c and Φ(e) = e. Hence property (F2d) holds for Φ.

Our procedure to check property (F2r) for Φ will again (as in the proof of Theorem 3.2)

make use of a function ψ : ~E → N
2 that captures information from property (F2r) for the

flow functions ΦK and ΦQ. Let ~EK = {eKk,a | k ∈ K,a ∈ A} be the set of directed edges of

the Cayley graph of K over A, and define dclK : ~EK → N by

dclK(eKk,a) = maximal length of a descending chain eKk,a >ΦK
e′ >ΦK

e′′ · · · .

Similarly let ~EQ = {eQq,b | q ∈ Q, b ∈ B} be the set of directed edges of the Cayley graph of

Q over B, and let dclQ(e
Q
q,b) be the maximum length of a descending chain starting at eQq,b

for the well-founded strict partial ordering >ΦQ
. Now define ψ : ~E → N

2 on the directed
edges of the Cayley graph of G over C by

ψ(eg,c) =





(1, dclK(eKg,c)) if c ∈ A and yg ∈ A∗

(2, ℓ(tg)) if c ∈ A and yg /∈ A∗

(3, dclQ(e
Q
q(g),q(c))) if c ∈ B̂

for all g ∈ G and c ∈ C. To prove property (F2r), it now suffices to show that e′ <Φ e
implies ψ(e′) <N2 ψ(e) (where <N2 is the lexicographic ordering) whenever e′, e do not lie
in T and e′ is a directed edge on the path Φ(e).

12 M. BRITTENHAM, S. HERMILLER, AND A. JOHNSON

To that end, let e = eg,c be any directed edge in Γ that does not lie in the tree T .

Case 1: Suppose that c ∈ A and yg ∈ A∗.

Each edge e′ in the path Φ(e) = path(yg, φK(yg, c)) has the form e′ = eg′,c′ with yg′ ∈ A
∗

and c′ ∈ A. Moreover, the edge eKg′,c′ lies in the path ΦK(eKg,c), and so eKg′,c′ <ΦK
eKg,c and

dclK(eKg′,c′)) ≤ dclK(eKg,c)− 1. Now ψ(e′) = (1, dclK(eKg′,c′)) <N2 (1, dclK(eKg,c)) = ψ(e).

Case 2: Suppose that c ∈ A and yg /∈ A∗.

The first edge in the path Φ(e) = path(yg, last(yg)
−1ulast(yg)clast(yg)−1 last(yg)) is eyg ,last(yg)−1 ;

since this is also the last edge of path(1, yg), this first edge lies in the tree T . Similarly, the
last edge in Φ(e) is eglast(yg)−1u

last(yg)clast(yg)−1 ,last(yg), and the terminal vertex of this edge is

gc =G [ugtgct
−1
g]tg = ktg where k = ugtgct

−1
g lies in K. Then the normal form of gc can be

written as uktg, ending in the letter last(yg), and so this last edge also lies in T .

Now suppose that e′ is any edge in the path Φ(e) that does not lie in T . Then e′ = eg′,c′
satisfies c′ ∈ A and g′ ∈ G has a normal form ug′tg′ with tg = tg′ last(yg). In this case either

tg′ = λ and ψ(e′) = (1, dclK(eKg′,c′)), or tg′ 6= λ and ψ(e′) = (2, l(tg′)) = (2, l(tg)− 1).

In either subcase, ψ(e′) <N2 (2, l(tg)) = ψ(e).

Case 3: Suppose that c ∈ B̂.

In this last case the path Φ(e) = path(yg, uc(hat(φQ(q(g),q(c))))−1hat(φQ(q(g), q(c)))) is the

concatenation of two paths ρ1 = path(yg, uc(hat(φQ(q(g),q(c))))−1) and ρ2 = path(yg′ , hat(φQ(q(g), q(c)))),

where g′ := guc(hat(φQ(q(tg),q(c))))−1 is the vertex at the terminus of ρ1 and the start of ρ2,

and we have ψ(e) = (3, dclQ(e
Q
q(g),q(c))).

For any edge e′ in the first subpath ρ1, the label on the edge e′ is an element of A, and
so ψ(e′) = (m,n) with m < 3. Hence ψ(e′) <N2 ψ(e).

To analyze the situation for an edge e′ of the path ρ2, we first note that the initial vertex
g′ of ρ2 satisfies q(g′) = q(g). Then e′ has the form e′ = e

u′hat(t′),ĉ′
for some u′ ∈ NK

and some edge eQt′,c′ of the path ΦQ(e
Q
q(g),q(c)). Then dclQ(e

Q
t′,c′) < dclQ(e

Q
q(g),q(c)), and

ψ(e′) = (3, dclQ(e
Q

q(u′hat(t′)),q(ĉ′)
)) = (3, dclQ(e

Q
t′,c′)) <N2 (3, dclQ(e

Q

q(g),q(c))) = ψ(e).

This completes the proof of property (F2r) for Φ, and so Φ is a flow function. Let kK
and kQ be the bounds on the flow functions ΦK and ΦQ. Let M := max{l(udcd−1) | d ∈ B̂

and c ∈ A}, and m := max{l(ucz) | c ∈ B̂ and z is in the (finite) image of φQ}. Then
max{kK , 2 +M,kQ +m} is a bound for the flow function Φ.

Step 2: Autostackable.

In this step we assume that the groups K and Q are autostackable, and in particular that
the sets graph(φK) and graph(φQ) are synchronously regular. We partition the finite image
sets im(φK) ⊂ A∗ and im(φQ) ⊂ B∗ as follows. For each c ∈ A, let Uc := {φ(y, c) | y ∈ NK},

and for each c ∈ B̂, let Vc := {φ(y, c) | y ∈ NQ}; that is, Uc is the finite set of labels on
paths obtained from the flow function φK action on edges with label c, and similarly for Vc.

HOMOLOGY AND CLOSURE PROPERTIES OF AUTOSTACKABLE GROUPS 13

The stacking function associated to the bounded flow function Φ for G from Step 1 of
this proof is the function φ defined in Step 1. Using the piecewise definition of φ, we have

graph(φ) = (∪c∈A, z∈Uc Lc,z × {c} × {z})

∪(∪
c∈A, b∈B̂ L′

c,b × {c} × {b−1ubcb−1b})

∪(∪
c∈B̂, z∈Vc

L′′
c,z × {c} × {uc(hat(z))−1hat(z)}),

where

Lc,z = {yg ∈ NG | yg ∈ A
∗ and φK(yg, c) = z},

L′
c,b = {yg ∈ NG | yg /∈ A∗ and last(yg) = b}, and

L′′
c,z = {yg ∈ NG | φQ(q(yg), q(c)) = z}.

The first language Lc,z is the set proj1(graph(φK) ∩ (A∗ × {c} × {z})). Synchronous
regularity of both sets in the intersection, along with Lemma 2.3, shows that Lc,z is regular.
The second language is L′

c,b = NG ∩ C∗b. Now NK = proj1(graph(φK)) and hat(NQ)

is a homomorphic image (via the map hat) of proj1(graph(φQ)), so these languages, as
well as their concatenation NG, are regular, and therefore so is L′

c,b. Finally, L′′
c,z is the

concatenation L′′
c,z = NK hat(proj1(graph(φQ)∩(B

∗×{q(c)}×{z}))); similar arguments show

that L′′
c,z is also regular. Using the closure of synchronously regular languages under finite

unions and Lemma 2.2 now shows that graph(φ) is also regular. Thus G is autostackable
over C.

Step 3: Algorithmically stackable.

Again the proof in this step is nearly identical to the proof of Step 2. �

3.3. Finite index supergroups.

In this section we show that a group containing a stackable, algorithmically stackable
or autostackable finite index subgroup must also have the same property. While there are
many similarities with the result and proof in Section 3.2, and so we do not include all of the
details of the proof, the argument in the present section requires a different flow function
because we do not require the subgroup to be normal.

Theorem 3.4. Let H be an autostackable [respectively, stackable, algorithmically stackable]
group on a finite inverse-closed generating set A, let G be a group containing H as a subgroup
of finite index, and let S ⊆ G be a set of coset representatives for G/H containing 1. Then
the group G with the generating set A ∪ (S \ {1})±1 is also autostackable [respectively,
stackable, algorithmically stackable].

Proof. Let NH , ΦH , and φH be the normal form set, bounded flow function, and associated
stacking map for H over A, and let H = 〈A|R〉 be the finite presentation obtained from
this flow function. Let B := (S \ {1})±1 and let C := A ∪B.

Since S is a transversal, the set

NG := NH ∪ {ut|u ∈ NH , t ∈ S \ {1}}

14 M. BRITTENHAM, S. HERMILLER, AND A. JOHNSON

is a set of normal forms for G over C. Moreover, prefix-closure of the language NH implies
that NG is also prefix-closed.

Let Γ be the Cayley graph for G with respect to C, with sets ~E and ~P of directed edges
and paths, and let T be the maximal tree in Γ determined by the set NG of normal forms.

Step 1: Stackable.

Given any g ∈ G, we write the normal form from NG for g as yg = ugtg where ug ∈ NH

and tg ∈ {λ}∪ (S \{1}). In this step we build a flow function whose associated presentation
is the finite presentation

G = 〈C | R ∪ {x = uxtx | x ∈ B \ S} ∪ {xy = uxytxy | x ∈ B, y ∈ C}〉

of the group G.

Define a function φ : NG × C → C∗ by

φ(yg, c) =





φH(yg, c) if c ∈ A and yg ∈ A∗

yc if c ∈ B and yg ∈ A∗

last(yg)
−1ylast(yg)c if c ∈ C and yg /∈ A∗

Also as usual define Φ : ~E → ~P by Φ(eg,c) := path(yg, φ(yg, c)).

It is again immediate from the definition of Φ that property (F1) of the definition of
flow function holds. To check property (F2d), suppose that e = eg,c is any edge in the
tree T . Then either ygc or ygcc

−1 lies in NG. If c ∈ A, then yg ∈ A∗ and either ygc or
ygcc

−1 is in NH . Then property (F2d) for φH implies that φG(yg, c) = φH(yg, c) = c. If
c ∈ B and yg ∈ A∗, then yg 6= ygcc

−1, and consequently ygc ∈ NG. Then c ∈ S \ {1} and
φG(yg, c) = yc = c. Finally, if c ∈ B and yg /∈ A∗, then ygc /∈ NG, and so ygcc

−1 ∈ NG. In
this case last(yg) = tg = c−1 ∈ S \ {1}, and φG(yg, c) = last(yg)

−1ylast(yg)c = cy1 = c. Then
in all cases we have Φ(e) = e; therefore (F2d) holds for Φ.

Next define ψ : ~E → N
2 by

ψ(eg,c) =





(0, dclH(eHg,c)) if c ∈ A and yg ∈ A
∗

(1, 0) if c ∈ B and yg ∈ A∗

(1, 1) if c ∈ C and yg /∈ A∗

where (as in the proof of Theorem 3.3), for an edge eHg,c in the Cayley graph of H over A,

dclH(eHg,c) ∈ N is the maximal length of a descending chain eHg,c >ΦH
e′ >ΦH

e′′ · · · . As

usual, let <N2 be the lexicographic order on N
2.

Let e = eg,c be any directed edge in Γ whose underlying undirected edge is not in T .

Case 1: Suppose that c ∈ A and yg ∈ A∗.

The proof in this case is similar to Case 1 of Step 1 in the proof of Theorem 3.3.

Case 2: Suppose that c ∈ B and yg ∈ A∗.

In this case ψ(e) = (1, 0), and the path Φ(e) is labeled by the word yc. Since the edge
e is not in T , the word ygc /∈ NG, and so c ∈ B \ S and yc = uctc for some uc ∈ NH and
tc ∈ S \ {1}. Each edge e′ in the subpath path(yg, uc) of Φ(e) satisfies ψ(e′) = (0, n) for
some n ∈ N, and so ψ(e′) <N2 ψ(e). The final edge eguc,tc of Φ(e) lies in the tree T .

HOMOLOGY AND CLOSURE PROPERTIES OF AUTOSTACKABLE GROUPS 15

Case 3: Suppose that c ∈ C and yg /∈ A∗.

In this case ψ(e) = (1, 1), and the path Φ(e) is labeled by the word last(yg)
−1ylast(yg)c. The

first edge eg,last(yg)−1 lies in T . Since last(yg) = tg, the next subpath of Φ(e) is path(ug, utgc).

Any edge e′ in this subpath satisfies ψ(e′) = (0, n) for some n ∈ N; hence ψ(e′) <N2 ψ(e).
The remainder of the path Φ(e) is the edge eugutgc,ttgc , which lies in the tree T .

We now have that ψ(e′) <N2 ψ(e) whenever e′ <Φ e, and so property (F2r) holds and Φ
is a flow function. Finally, since A, B, C, and the image im(φH) of the stacking map for H
are finite sets, the flow function Φ is bounded. Therefore G is stackable over C.

Step 2: Autostackable and algorithmically stackable.

The map φ from Step 1 is the stacking map for the flow function Φ for G, and the graph
of this function can be decomposed as a finite union of sets

graph(φ) = (∪c∈A, z∈{φH(y,c)|y∈NH} proj1(graph(φH) ∩ (A∗ × {c} × {z})) × {c} × {z})

∪(∪c∈B NH × {c} × {yc})

∪(∪c∈C, s∈S\{1} NHs× {c} × {s−1ysc}).

With the added assumption that graph(φH) is either synchronously regular or computable,
then graph(φ) satisfies the same property. �

4. Homological finiteness

The purpose of this section is to investigate the homological properties of autostackable
groups by studying Stallings’ [25] non-FP3 group

G := 〈a, b, c, d, s | [a, c] = [a, d] = [b, c] = [b, d] = 1, [s, ab−1] = [s, ac−1] = [s, ad−1] = 1〉

with respect to the generating set A := {a±1, b±1, c±1, d±1, s±1}.

The group G is an HNN extension, with stable letter s, of the direct product of two free
groups of rank 2,

H = F2 × F2 = 〈a, b, c, d | [a, c] = [a, d] = [b, c] = [b, d] = 1〉

generated by the subset Z := {a±1, b±1, c±1, d±1}. Since the relations of this presentation
have zero exponent sum as words over Z, given any element h ∈ H, there is a unique number
expsum(h) such that every word over Z representing h has exponent sum expsum(h). Let N
denote the subgroup of H of elements of zero exponent sum. Then N is a normal subgroup
(as conjugation preserves exponent sum) of H, and N is generated by ab−1, ac−1, and ad−1.
In the HNN extension G, conjugation by the stable letter s is the identity map on N . (See
for example [10] for more details.)

The set {ai | i ∈ Z} is both a left transversal and right transversal of N in H. Let

NH := {uv | u ∈ {a±1, b±1}∗ and v ∈ {c±1, d±1}∗ are freely reduced};

this is a set of normal forms for H over Z. Then

NG := {wsǫ1ai1sǫ2ai2 · · · sǫnain | w ∈ NH , n ≥ 0, ǫj ∈ {±1} and ij ∈ Z for all j,
and whenever ij = 0, then ǫj = ǫj+1}

16 M. BRITTENHAM, S. HERMILLER, AND A. JOHNSON

is a set of normal forms for G over A (using normal forms for HNN extensions; for example,
see [22, Theorem IV.2.1]). In fact, the set NG is the set of irreducible words of the (infinite)
complete rewriting system

RG = {xx−1 → λ | x ∈ A} ∪ {yx→ xy | x ∈ {a±1, b±1}, y ∈ {c±1, d±1}}
∪ {sǫaiyη → a−ηyηsǫaη+i | ǫ, η ∈ {±1}, i ∈ Z, y ∈ {c, d}}
∪ {sǫaibη → aibηa−η−isǫaη+i | ǫ, η ∈ {±1}, i ∈ Z}}

for G over A. We also note that the language NG is prefix-closed, and so determines a
maximal tree in the Cayley graph for G over A.

Theorem 4.1. Stallings’ non-FP3 group G is autostackable.

Proof. Let NG be the normal form set for G over the generating set A described above, and
denote the normal form for any element g ∈ G by yg. Let Γ be the Cayley graph of G over

A, with sets ~E and ~P of directed edges and paths, respectively, and let T be the tree in Γ
corresponding to the set NG of normal forms.

Step 1: Stackable.

Define a function φ : NG ×A→ A∗ by

φ(yg, x) :=





x if either ygx ∈ NG or ygxx
−1 ∈ NG

last(yg)
−1xlast(yg) if x ∈ {a±1, b±1}, yg ∈ Z

∗, and last(yg) ∈ {c±1, d±1}

last(yg)
−1xlast(yg) if x ∈ {c±1, d±1}, yg /∈ Z∗, and last(yg) ∈ {a±1}

c−ηxcη if x ∈ {b±1}, yg /∈ Z
∗, η ∈ {±1}, and last(yg) = aη

last(yg)
−1xa−η last(yg)a

η if x ∈ {bη, cη , dη} with η ∈ {±1}, and last(yg) ∈ {s±1}

for all yg ∈ NG and x ∈ A. In all of the cases that do not appear explicitly, namely when
either [x ∈ {s±1}]; [x ∈ {a±1, b±1}, yg ∈ Z∗, and last(yg) ∈ {1, a±1, b±1}]; [x ∈ {c±1, d±1}
and yg ∈ Z∗]; or [x ∈ {a±1} and yg /∈ Z∗], it follows from the definition of NG that either
ygx or ygxx

−1 lies in NG. Moreover, one can also check that the five cases in the definition
of φ are disjoint; that is, the function φ is well-defined.

Let Φ : ~E → ~P denote the function Φ(eg,a) := path(yg, φ(yg, a)). It follows immediately
from the definition of Φ and the presentation of G that properties (F1) and (F2d) of the
definition of flow function hold for Φ.

In order to prove that property (F2r) holds for Φ, we utilize the following function

ψ : ~E → N
3. Define ψ(eg,x) := (0, 0, 0) if eg,x lies in the tree T , and if eg,x does not lie in

T , let

ψ(eg,x) :=





(0, 0, l(suf{c±1,d±1}(yg))) if x ∈ {a±1, b±1} and yg ∈ Z
∗

(ns(yg), l(suf{a±1}(yg)), 0) if x ∈ {c±1, d±1} and yg /∈ Z∗

(ns(yg), l(suf{a±1}(yg)), 1) if x ∈ {b±1} and yg /∈ Z∗,

where ns(yg) denotes the number of occurrences of s±1 in the word yg. Let <N3 denote the
lexicographical ordering on N

3 obtained from the standard ordering on N, a well-founded
strict partial ordering. To prove (F2r), then, it suffices to show that whenever e′ <Φ e, then
ψ(e′) <N3 ψ(e).

HOMOLOGY AND CLOSURE PROPERTIES OF AUTOSTACKABLE GROUPS 17

Let e = eg,x ∈ ~E be any edge whose underlying undirected edge does not lie in T .

Case 1: Suppose that x ∈ {a±1, b±1}, yg ∈ Z∗, and last(yg) ∈ {c±1, d±1}.

In this case ψ(e) = (0, 0, l(suf{c±1,d±1}(yg))). The path Φ(e) contains three directed edges:
e1 := eg,last(yg)−1 , e2 := eglast(yg)−1,x and e3 := eglast(yg)−1x,last(yg). The edge e1 lies in the

tree T , as yglast(yg)−1 last(yg) = yg. The edge e2 either lies in T , or else its image under ψ is

ψ(e2) = (0, 0, l(suf{c±1,d±1}(yglast(yg)−1)). Since yglast(yg)−1 is the prefix of yg consisting of all

but the last letter last(yg) (which lies in {c±1, d±1}), we have l(suf{c±1,d±1}(yglast(yg)−1)) =

l(suf{c±1,d±1}(yg)) − 1 and ψ(e2) <N3 ψ(e). To analyze the edge e3, we decompose yg =

uvlast(yg) where u ∈ {a±1, b±1}∗ and vlast(yg) ∈ {c±1, d±1}+ are reduced words. Now the
normal forms satisfy yglast(yg)−1xlast(yg) = yuxvlast(yg) = yglast(yg)−1xlast(yg), and so the edge
e3 also lies in the tree T .

Case 2: Suppose that x ∈ {c±1, d±1}, yg /∈ Z∗, and last(yg) ∈ {a±1}.

In this case we have ψ(e) = (ns(yg), l(suf{a±1}(yg)), 0), and there are three directed edges
in the path Φ(e). Similar to case 1, the first of these edges, eg,last(yg)−1 , lies in the tree T .

The second edge, e2 := eglast(yg)−1,x has ψ function value of ψ(e2) = (ns(yg), l(suf{a±1}(yg))−
1, 0) <N3 ψ(e). The third edge is e3 := eglast(yg)−1x,last(yg). Applying the rewriting system

RG above shows that the normal form of the word yglast(yg)
−1x again contains ns(yg) > 0

appearances of s±1, and therefore the edge e3 also lies in T .

Case 3: Suppose that x ∈ {b±1}, yg /∈ Z∗, η ∈ {±1}, and last(yg) = aη.

Now ψ(e) = (ns(yg), l(suf{a±1}(yg)), 1), and the path Φ(e) contains three directed edges:
e1 := eg,c−η , e2 := egc−η ,x and e3 := egc−ηx,cη . Unlike the previous cases, none of these edges
lie in T . The edge e1 satisfies ψ(e1) = (ns(yg), l(suf{a±1}(yg)), 0) <N3 ψ(e).

For the analysis of the other two edges, we first use the definition of the set NG to write
out the normal form yg = wsǫ1ai1 · · · sǫnain where w ∈ NH , n > 0, ǫj ∈ {±1} and ij ∈ Z

for all j, and in/|in| = η. Note that with this notation, ψ(e) = (n, |in|, 1).

The normal form for gc−η is ygc−η = ywc−ηaηs
ǫ1ai1 · · · sǫnain−η. Therefore the image of

e2 under ψ satisfies ψ(e2) = (n, |in| − 1, 1) <N3 ψ(e).

Writing x = bβ with β ∈ {±1}, then the value of ψ(e3) depends upon the sign of the prod-
uct β · η. If β · η = 1, then the normal form of the element gc−ηx of G is yhs

ǫ1ai1 · · · sǫnain

where h =H wai1+···+inc−ηxa−(i1+···+in). In this subcase, then, ψ(e3) = (n, |in|, 0) <N3 ψ(e).
On the other hand if β · η = −1, then the normal form of gc−ηx is yh′sǫ1ai1 · · · sǫnain−2η,
where h′ =H wai1+···+inc−ηxa−(i1+···+in)+2η . Since η = in/|in|, then |in − 2η| ≤ |in|. There-
fore in this subcase we have ψ(e3) = (n, |in − 2η|, 0) <N3 ψ(e).

Case 4: Suppose that x ∈ {bη , cη, dη} with η ∈ {±1}, and last(yg) ∈ {s±1}.

In this case ψ(e) = (ns(yg), 0,m) (with m ∈ {0, 1} depending on x) and Φ(e) con-
tains five directed edges: e1 := eg,last(yg)−1 , e2 := eglast(yg)−1,x, e3 := eglast(yg)−1x,a−η ,
e4 := eglast(yg)−1xa−η ,last(g) and e5 := eglast(yg)−1xa−η last(g),aη . Edges e1 and e4 both lie in the

tree T , since every edge labeled by s±1 lies in this tree. The initial vertex of the edge e5 is
the element g′ =G glast(yg)

−1xa−η last(g) of G; since g /∈ H and last(yg)
−1xa−η last(g) ∈ H,

then g′ /∈ H and yg′ /∈ Z∗. Hence the edge e5 also lies in T , as any edge labeled by the
letter a±1 with initial vertex having a normal form outside of Z∗ lies in T .

18 M. BRITTENHAM, S. HERMILLER, AND A. JOHNSON

If ns(yg) > 1, then ψ(e2) = (ns(yg) − 1, l(suf{a±1}(yglast(yg)−1)),m) and thus ψ(e2) <N3

ψ(e). Moreover when ns(yg) > 1, the argument above showing that e5 lies in T applies to
show that e3 lies in T as well. On the other hand, if ns(yg) = 1, then the image via ψ for
both e2 and e3 has the form (0, 0, l(suf{c±1,d±1}(y)) for a word y ∈ NH , or else is (0,0,0). In
this case, we also have both ψ(e2) <N3 ψ(e) and ψ(e3) <N3 ψ(e).

These four cases show that for any directed edge e′ that is in Φ(e) but not in T , the
inequality ψ(e′) <N3 ψ(e) holds. Hence property (F2r) holds for the function Φ, and Φ is a
flow function. Moreover, this flow function is bounded, with bounding constant k = 5.

Step 2: Autostackable.

The function φ defined in Step 1 of this proof is the stacking function associated to
the bounded flow function Φ. It remains for us to show that the language graph(φ) is
synchronously regular. As in our earlier proofs, we proceed by expressing graph(φ) as a
union of other languages, using the piecewise definition of φ from Step 1:

graph(φ) = (∪x∈A Lx × {x} × {x})

∪(∪x∈{a±1,b±1}, z∈{c±1,d±1} Lx,z × {x} × {z−1xz})

∪(∪x∈{c±1,d±1}, z∈{a±1} L
′
x,z × {x} × {z−1xz})

∪(∪x∈{b±1}, η∈{±1} Lx,η × {x} × {c−ηxcη})

∪(∪η∈{±1}, x∈{bη ,cη,dη}, z∈{s±1} Lη,x,z × {x} × {z−1xa−ηzaη}),

where

Lx = {yg ∈ NG | either ygx ∈ NG or ygxx
−1 ∈ NG},

Lx,z = {yg ∈ NG | yg ∈ Z∗ and last(yg) = z},

L′
x,z = {yg ∈ NG | yg /∈ Z∗ and last(yg) = z},

Lx,η = {yg ∈ NG | yg /∈ Z∗ and last(yg) = aη}, and

Lη,x,z = {yg ∈ NG | last(yg) = z}.

Using Lemma 2.2 and closure of synchronously regular languages under finite unions, it
suffices to show that each of the languages Lx, Lx,z, L

′
x,z, Lx,η, and Lη,x,z is regular.

We start by considering the set NG. This is the set of irreducible words for the rewriting
system RG, and so can be written as NG = A∗ \A∗MA∗ where

M = {xx−1 | x ∈ A} ∪ {c±1, d±1}{a±1, b±1} ∪ s±1(a∗ ∪ (a−1)∗){b±1, c±1, d±1}.

Closure of the class of regular languages under finite unions and concatenation shows that
M is regular; closure under concatenation and complement then shows that NG is regular.

The language Lx can be expressed as Lx = (NG/x)∪(NG∩A∗x−1). Applying Lemma 2.1
and regularity of NG, then Lx is a regular language.

Note that Lx,z = NG ∩Z∗ ∩A∗z, L′
x,z = (NG ∩A∗z) \Z∗, Lx,η = (NG ∩A∗aη) \Z∗, and

Lη,x,z = NG ∩A∗z, and so regularity of these languages also follows from regularity of the
normal form set NG. �

Theorem 4.1 yields following.

HOMOLOGY AND CLOSURE PROPERTIES OF AUTOSTACKABLE GROUPS 19

Corollary 4.2. There is an autostackable group that does not satisfy the homological finite-
ness condition FP3.

Remark 4.3. Recall from Section 1 that Stallings’ group G cannot have a finite complete
rewriting system. Earlier in Section 4 (on p. 16), we gave an infinite complete rewriting sys-
tem for this group. A consequence of Theorem 4.1 is that Gmust also admit a synchronously
regular bounded prefix-rewriting system over the generating set A. For completeness, we
record this system in this remark; the prefix-rewriting system is:

RG = {zx−1x→ z | x ∈ A, zx−1 ∈ NG}
∪ {zyx→ zxy | x ∈ {a±1, b±1}, y ∈ {c±1, d±1}, zy ∈ NG ∩ Z∗}
∪ {zyx→ zxy | x ∈ {c±1, d±1}, y ∈ {a±1}, zy ∈ NG \ Z∗}
∪ {zaηx→ zaηc−ηxcη | x ∈ {b±1}, η ∈ {±1}, zaη ∈ NG \ Z∗}
∪ {zsǫxη → zxηa−ηsǫaη | x ∈ {b, c, d}, ǫ, η ∈ {±1}, zsǫ ∈ NG}.

Acknowledgment

The second author was partially supported by grants from the Simons Foundation (#245625)
and the National Science Foundation (DMS-1313559).

References

[1] Alonso, J.M., Combings of groups, Algorithms and classification in combinatorial group theory (Berke-
ley, CA, 1989), 165–178, Math. Sci. Res. Inst. Publ., 23, Springer, New York, 1992.

[2] Anick, D.J., On the homology of associative algebras, Trans. Amer. Math. Soc. 296 (1986), 641–659.
[3] Baumslag, G., Gersten, S.M., Shapiro, M., and Short, H., Automatic groups and amalgams, J. Pure

Appl. Algebra 76 (1991), 22–316.
[4] Brittenham, M. and Hermiller, S., Tame filling invariants for groups, Internat. J. Algebra Comput. 25

(2015), 813–854.
[5] Brittenham, M. and Hermiller, S., A uniform model for almost convexity and rewriting systems, J. Group

Theory 18 (2015), 805–828.
[6] Brittenham, M., Hermiller, S. and Holt, D., Algorithms and topology of Cayley graphs for groups,

J. Algebra 415 (2014), 112–136.
[7] Brown, K.S., The geometry of rewriting systems: a proof of the Anick-Groves-Squier the-

orem, Algorithms and classification in combinatorial group theory (Berkeley, CA, 1989),
Math. Sci. Res. Inst. Publ. 23, 137–163, Springer, New York, 1992.

[8] Cohen, D.E., String rewriting and homology of monoids, Math. Structures Comput. Sci. 7, (1997),
207–240.

[9] Elder, M.J., The loop shortening property and almost convexity, Geom. Dedicata 102 (2003), 1–18.
[10] Elder, M. and Hermiller, S., Minimal almost convexity, J. Group Theory 8 (2005), 239–266.
[11] Epstein, D.B.A., Cannon, J., Holt, D., Levy, S., Paterson, M. and Thurston, W., Word Processing in

Groups, Jones and Bartlett, Boston, 1992.
[12] Farkas, D.R., The Anick resolution, J. Pure Appl. Algebra 79 (1992), 159–168.
[13] Green, E., Graph Products of Groups, PhD thesis, University of Leeds, 1990.
[14] Groves, J.R.J., Rewriting systems and homology of groups, Groups–Canberra 1989, Lecture Notes in

Math. 1456, 114–141, Springer, Berlin, 1990.
[15] Groves, J.R.J. and Smith, G.C., Soluble groups with a finite rewriting system, Proc. Edinburgh

Math. Soc. 36 (1993), 283–288.
[16] Hermiller, S. and Meier, J., Algorithms and geometry for graph products of groups, J. Algebra 171

(1995), 230–257.

20 M. BRITTENHAM, S. HERMILLER, AND A. JOHNSON

[17] Hermiller, S. and Meier, J., Artin groups, rewriting systems and three-manifolds, J. Pure Appl. Alge-
bra 136 (1999), 141-156.

[18] Hopcroft, J. and Ullman, J.D., Introduction to automata theory, languages, and computation, Addison-
Wesley Series in Computer Science, Addison-Wesley Publishing Co., Reading, Mass., 1979.

[19] Hsu, T. and Wise, D.T., On linear and residual properties of graph products, Michigan Math. J. 46
(1999), 251–259.

[20] Kobayashi, Y., Complete rewriting systems and homology of monoid algebras, J. Pure Appl. Algebra 65

(1990), 263–275.
[21] Lafont, Y., A new finiteness condition for monoids presented by complete rewriting systems (after Craig

C. Squier), J. Pure Appl. Algebra 98 (1995), 229–244.
[22] Lyndon, R.C. and Schupp, P.E., Combinatorial group theory, Classics in Mathematics, Springer-Verlag,

Berlin, 2001.
[23] Pride, S.J. and Wang, J., Subgroups of finite index in groups with finite complete rewriting systems,

Proc. Edinburgh Math. Soc. (2) 43 (2000), 177–183.
[24] Sims, C.C., Computation with finitely presented groups, Encyclopedia of Mathematics and its Appli-

cations 48, Cambridge University Press, Cambridge, 1994.
[25] Stallings, J., A finitely presented group whose 3-dimensional integral homology is not finitely generated,

Amer. J. Math. 85 (1963), 541–543.

Department of Mathematics, University of Nebraska, Lincoln NE 68588-0130, USA

E-mail address: mbrittenham2@math.unl.edu

Department of Mathematics, University of Nebraska, Lincoln NE 68588-0130, USA

E-mail address: smh@math.unl.edu

Department of Mathematics, University of North Alabama, Florence AL, 35632, USA

E-mail address: ajohnson18@una.edu

