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Abstract: In 1987 Squier defined the notion of finite derivation type for a finitely presented monoid.

To do this, he associated a 2-complex to the presentation. The monoid then has finite derivation type if,

modulo the action of the free monoid ring, the 1-dimensional homotopy of this complex is finitely generated.

Cremanns and Otto showed that finite derivation type implies the homological finiteness condition left

FP3, and when the monoid is a group, these two properties are equivalent. In this paper we define a new

version of finite derivation type, based on homological information, together with an extension of this finite

derivation type to higher dimensions, and show connections to homological type FPn for both monoids

and groups.

1. Introduction

In [11], Squier defined a complex associated to a finite presentation of a monoid or group,

along with a combinatorial property of this complex known as finite derivation type. His original

motivation was to capture much of the information of a finite complete rewriting system for a

monoid in a property which is independent of presentation. More recently, Cremanns and Otto [4],

Lafont [8], and Pride [9] have independently shown that the finite derivation type property also

implies the homological finiteness conditions left and right FP3 for monoids, and Cremanns and

Otto [5] have shown that finite derivation type is equivalent to the property left (and hence right)

FP3 for groups (see also [10] for an alternative proof of this result). For monoids, these conditions

are not equivalent. In his original paper, Squier [11] gave an example of a monoid with type left

FP3 which does not have finite derivation type, and more recently Kobayashi and Otto [7] have

constructed a monoid which is both left and right FP3 (and moreover both left and right FP∞)

but which does not have finite derivation type.

For a finitely presented group, type FP3 is a property of the 2-dimensional homology of the

Cayley complex associated to the presentation, implying finite generation as a left module over the

integral group ring. A finitely presented monoid also has finite derivation type essentially if the 1-

dimensional homotopy of the corresponding Squier complex is finitely generated, modulo an action

by the free monoid on the generators. Thus the theorem of Cremanns and Otto shows that the

property FP3 for a group can be reduced in dimension to a property of the 1-dimensional homotopy

of another complex. It is natural to ask if this process can be repeated in higher dimensions. In

[6], Kobayashi has introduced a property known as a homotopy reduction system, which is similar

to finite derivation type in one dimension higher, and has shown that this property implies the

homological finiteness condition right FP4 for finitely presented monoids.

In [12], X. Wang and Pride introduce the notion of finite homological type (in more recent

work this has also been referred to as finite homotopy type), which is a finiteness condition on the

homology rather than the homotopy of the Squier complex. They also show that for groups, this

property is equivalent to the condition FP3, and for monoids, it implies left and right FP3. The
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monoid constructed in [7] is also shown there not to have finite homological type, so as above this

condition is not equivalent to the property of left and right FP3 for monoids.

In this paper, we introduce a new definition of homological finite derivation type in all di-

mensions, in Sec. 3. This definition starts from information about a partial free resolution of the

integers over the integral monoid or group ring, and imitates Squier’s construction. Since we start

with a resolution rather than a finite presentation for the monoid or group, this also allows the

monoid to be infinitely presented. Associated to this resolution we introduce a sequence of graphs,

one for each dimension n, which capture n-dimensional homological information about the monoid.

A monoid then has n-dimensional homological finite derivation type if each of the graphs up to

dimension n satisfies a property analogous to Squier’s finite derivation type.

In Sec. 4 we study a bimodule structure on a set of pairs of paths in the graphs defined in

Sec. 3, and show that the bimodule is isomorphic to the kernel of the corresponding boundary map

in the resolution.

In Sec. 5 we use the results in Sec. 4 to prove the main theorem of this paper. This theorem

states that for groups, the property of homological finite derivation type in dimension n (HFDTn)

is equivalent to the property FPn, and for monoids, HFDTn is equivalent to the existence of a

length n partial resolution of the integers by finite rank free left, right, or bi-modules over the

integral monoid ring (the property left, right, or bi- FPn, respectively), depending on which type

of modules occur in the original resolution to which the graphs are associated.

We begin in Sec. 2 with a discussion of homological finiteness conditions, including the con-

nections between left, right, and bi- FPn for groups and monoids. We prove that a monoid that

has both type left FPn and right FPn must also have type bi- FPn, and the converse is also true

for groups. Therefore the results listed above show that finite derivation type and finite homolog-

ical type each imply the property HFDT3, and the converse is true for groups but not true for

monoids. In particular, the monoid example in [7] has type left, right, and bi- FP3, and hence

HFDT3 on the corresponding sides, but does not have finite derivation type nor finite homological

type. Section 2 also includes background on Squier’s finite derivation type.

2. Background

2.1. Homological finiteness conditions

A group G has type FPn if there is an exact sequence (or partial resolution of Z) Pn → · · · →

P0 → Z → 0 with finitely generated free left ZG-modules Pi, and G has type FP∞ if it has type

FPn for every natural number n.

A monoid M has type left FPn if there is a partial resolution of the integers by finitely

generated free left ZM -modules of length n. Similarly M has type right FPn if there is a length

n resolution of Z by finite rank free right ZM -modules and M has type bi- FPn if there is a finite

rank free length n resolution of Z by (ZM,ZM)-bimodules. The monoid has type left, right, or

bi- FP∞ if it has type left, right, or bi- FPn for all n, respectively.

For a group G, if P is a left ZG-module, then there is an associated right ZG-module P ′. As

an abelian group, P ′ is isomorphic to P with an isomorphism φ : P → P ′, and the right action

of G on P ′ is given by p · g := φ(g−1 · φ−1(p)), where p ∈ P ′ and g ∈ G. If P is free, then P ′

is also free with the same basis. Thus any partial resolution of Z by finitely generated free left

ZG-modules has an associated resolution by finitely generated free right ZG-modules. Similarly,
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any partial resolution by right modules has an associated left module resolution. Therefore for

groups, the properties of left FPn and right FPn are equivalent.

Also for a group G, if P is a free (ZG,ZG)-bimodule, then there is an associated free left

Z(G×G)-module P ′′ with the same basis, defined via an abelian group isomorphism θ : P → P ′′,

and action (g, h) · p := θ(g · θ−1(p) · h−1) for g, h ∈ G and p ∈ P ′′. Then any partial resolution of

Z by finitely generated free (ZG,ZG)-bimodules has an associated resolution by finitely generated

free left Z(G×G)-modules, and the converse is also true. Therefore G has type bi- FPn iff G×G

has type FPn. [2, Proposition V.1.1] shows that if G has type FPn, then so does G × G. Since

the group G is a retract of G×G, [1, Theorem 8] shows that if G×G has type FPn, then so does

G. This proves the following.

Proposition 2.1. For any group G, the finiteness conditions left FPn, right FPn, and bi- FPn

are equivalent.

Thus for groups, the side is not mentioned in the FPn property.

In the case of monoids, however, Daniel Cohen [3] has shown that these properties are not all

equivalent; in particular, his paper shows that there is a monoid which has type right FP∞ but

which is not left FP1. A revision of the discussion above leads to the following connection between

these finiteness conditions for monoids.

Proposition 2.2. If a monoid M satisfies both of the finiteness conditions left FPn and right

FPn, then M also has type bi- FPn.

Proof. Suppose M has type left and right FPn. Let Ln → · · · → L0 → Z → 0 be a finite rank

free partial resolution of Z by left ZM -modules, and let Rn → · · · → R0 → Z → 0 be a finite rank

free partial resolution of Z by right ZM -modules. Then each abelian group Lp ⊗Z Rq is a free

finite rank (ZM,ZM)-bimodule. The complexes Ln → · · · → L0 → 0 and Rn → · · · → R0 → 0

each have trivial homology groups in dimension greater than 0, and homology group H0 equal to

Z. Define the complex Cn → · · · → C0 to be the tensor product over Z of these two complexes.

That is,

Ci :=
⊕

p+q=i

Lp ⊗Z Rq

and ∂i(l⊗ r) := ∂p(l)⊗ r + (−1)pl⊗ ∂q(r) for l ∈ Lp and r ∈ Rq. Then each Ci is also a free finite

rank (ZM,ZM)-bimodule. The Künneth formula for a tensor product of complexes ([2, Proposition

I.0.8]) then applies to show that the complex Cn → · · · → C0 → 0 has homology groups which

are also trivial, except for H0(C) = H0(L) ⊗ H0(R) = Z ⊗ Z = Z. Then the augmented complex

Cn → · · · → C0 → Z → 0 is a free finite rank partial resolution of Z by (ZM,ZM)-bimodules.

Therefore M has type bi- FPn.

For a group G, the FPn property has a connection to topology as well. A K(G, 1)-complex is a

connected CW complex Y with fundamental group π1(Y ) = G and contractible universal cover Ỹ .

The cellular chain complex C∗(Ỹ ), with the augmentation map to the integers, gives a resolution

of Z by free left ZG-modules. If the group G has a K(G, 1)-complex with only finitely many cells

in dimension less than or equal to n (and arbitrarily many cells of higher dimension), then the

group also has type FPn.

For any monoid or group M and any integer n ≥ 0, the property (left, right, or bi-) FPn is

equivalent to the property that for every partial finitely generated free (or projective) resolution
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Fk → · · · → F0 → Z → 0 of ZM -modules on the corresponding side with k < n, ker{Fk → Fk−1}

is finitely generated (see, for example, [2, Theorem 4.3 of Chap. 8]).

For proofs and more detailed information on homological finiteness conditions, we refer the

reader to [2].

2.2. Finite derivation type

In this section we give the definition of the graph and homotopy relations associated to a finite

monoid presentation, defined by Squier in [11]. Let P = 〈A | R〉 be a presentation of a monoid M ,

and let A∗ be the free monoid on A.

Definition (Associated graph X). ([11]) This is the graph whose vertices and edges are given

by:

(1) Vertices: V (X) := A∗.

(2) Edges: E(X) := {(a, [π1, π−1], b, ε) | a, b ∈ A∗, [π1, π−1] ∈ R, ε ∈ {1,−1} }.

(3) ι, τ : E(X) → V (X) are defined by:

ι(e) := a · πε · b τ(e) := a · π−ε · b,

where e denotes (a, [π1, π−1], b, ε) and · denotes concatenation in A∗.

(4) ()−1 : E(X) → E(X) is given by

(a, [π1, π−1], b, ε)
−1 := (a, [π1, π−1], b,−ε).

Next define the set of paths

P := {(e1, ..., em) | ej ∈ E(X), τ(ej) = ι(ej+1) for each j}.

Denoting concatenation of paths by ◦, we will write (e1, ..., em) as e1 ◦ · · · ◦ em. For x ∈ V (X), let

(x) denote the constant path at x. Again we have maps ι, τ : P → V (X) defined by

ι(e1 ◦ · · · ◦ em) = ι(e1) and τ(e1 ◦ · · · ◦ em) = τ(em).

When M = G is a group, the edges and paths in the associated graph X also have the following

topological meaning. Suppose Y is the standard complex associated to the presentation P (in this

case considered as a group presentation) of G. An element of E(X) corresponds to a single 2-cell

in the universal cover Ỹ , with top πε and bottom π−ε, together with a 1-dimensional tail a on the

left, and another tail b on the right. An element of P corresponds to a 2-disk, with top ι(e1) and

bottom τ(em); the interior of the disk consists of a layering of the 2-cells from e1, ..., em in order

from top to bottom, with the 2-cells offset from one another horizontally using the tails.

Definition (Action of A∗ on P ). Given α ∈ A∗ and e = (a, [π1, π−1], b, ε) ∈ E(X), set

α · e := (α · a, [π1, π−1], b, ε) and e · α := (a, [π1, π−1], b · α, ε),

which are edges in E(X). Given a path p = e1 ◦ · · · ◦ ek ∈ P , set

α · p := (α · e1) ◦ · · · ◦ (α · em) and p · α := (e1 · α) ◦ · · · ◦ (em · α),

which are paths in P .

4



Definition (P (2)(X)).

P (2)(X) := {(p, q) | p, q ∈ P, ι(p) = ι(q), τ(p) = τ(q)}.

Definition (D, I).

D := {((e1 · ι(e2)) ◦ (τ(e1) · e2), (ι(e1) · e2) ◦ (e1 · τ(e2))) | e1, e2 ∈ E(X)}

I := {(e ◦ e−1, (ι(e))) ∈ P (2)(X) | e ∈ E(X) }.

Definition (Homotopy relation). A homotopy relation on P is an equivalence relation ' ⊆

P (2)(X) such that

(1) D ∪ I ⊆ '.

(2) If p, q ∈ P , p ' q, and α ∈ A∗, then α · p ' α · q and p · α ' q · α.

(3) If p, q, r, s ∈ P , τ(r) = ι(p), ι(s) = τ(p), and p ' q, then r ◦ p ' r ◦ q and p ◦ s ' q ◦ s.

For any set B ⊆ P (2)(X), the smallest possible homotopy relation containing B will be called

the homotopy relation generated by B.

Definition (Finite derivation type). The monoid M has finite derivation type, or type FDT ,

if there is a finite set B ⊆ P (2)(X) for which the homotopy relation generated by B is all of

P (2)(X).

If a monoid M has a finite presentation P = 〈A | R〉, there is an exact sequence of free left

ZM -modules

F2 → F1 → F0 → Z → 0,

where each Fi has a basis βi with β0 = {σ1}, β1 = A, β2 = R, and

Fi =
⊕

σ∈βi

ZMσ.

(See [2] for more details.) If, moreover, M has finite derivation type, in the proofs [4,8,9] that finite

derivation type implies the property left FP3 for monoids and groups, it is shown that there is a

free left ZM -module

F3 =
⊕

σ∈β3

ZMσ

with β3 = B and an exact sequence

F3 → F2 → F1 → F0 → Z → 0.

3. Definition of homological finite derivation type

In this section we define a homological version of finite derivation type for all dimensions. To

do this, we start from homological information and construct a graph resembling the graph X.

We will work with bimodules throughout, to illustrate both the left and right actions together;
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however, all of the discussion in the remainder of the paper can be done for left or right modules

only, also.

Suppose that M is a monoid and that ∂n : Fn → Fn−1 is a homomorphism of (ZM,ZM)-

bimodules. Suppose moreover that Fn is a free (ZM,ZM)-bimodule, and choose a basis βn. We

can write

Fn =
⊕

σ∈βn

ZMσM.

Let βn := {mσm′|m,m′ ∈ M,σ ∈ βn} be the corresponding (Z,Z)-bimodule basis. As in the

definition of finite derivation type, we associate a graph with this data, and study relations among

the paths in this graph. Eventually the homomorphisms ∂n we will consider will be the boundary

homomorphisms of a resolution

Fn
∂n→Fn−1 → · · · → F0

∂0→Z → 0.

In this case, for ease of notation, we write F−1 = Z.

Definition (Associated graph Γn). This is the graph whose vertices and edges are given by:

(1) Vertices: V (Γn) := Fn−1.

(2) Edges: E(Γn) := {(x, σ, y, ε)|x, y ∈ Fn−1, σ ∈ βn, ε = ±1, ∂nσ = (y − x)}.

(3) ι, τ : E(Γn) → V (Γn) are defined by (e denotes (x, σ, y, ε)):

ι(e) :=

{
x, for ε = 1
y, for ε = −1

τ(e) :=

{
y, for ε = 1
x, for ε = −1

Note that ∂nσ = ε(τ(e)− ι(e)).

(4) ()−1 : E(Γn) → E(Γn) is given by (x, σ, y, ε)−1 := (x, σ, y,−ε).

As noted above, the definition of Γn can also be applied to a homomorphism of left ZM -

modules, with βn the basis of Fn as a free left ZM -module, and βn := {mσ|m ∈ M,σ ∈ βn} the

corresponding left Z-module basis, in that case. Similarly, Γn can be defined for a homomorphism

of right modules.

Note that if the monoid M has a finite presentation P = 〈A | R〉, Sec. 2.2 describes an

associated exact sequence of left ZM -modules. The boundary map ∂2 : F2 → F1 in Sec. 2.2

corresponds to the same dimensional information as the graph X associated to the presentation P ,

but gives rise to a graph Γ2 which differs from X. In particular, the vertices of Γ2 are elements of

F1 =
⊕

σ∈A

ZMσ,

and the vertices of X are the elements of A∗.

Let P (Γn) be the set of paths, or homological derivations, in Γn. If x ∈ V (Γn) = Fn−1, let (x)

denote the constant path at the vertex x. For p = e1 ◦· · ·◦ek ∈ P (Γn), ι(p) := ι(e1), τ(p) := τ(ek),

and p−1 := e−1
1 ◦ · · · ◦ e−1

k .

Just as for the graph X in Section 2.2, when M = G is a finitely presented group the paths

in Γn also have the following topological meaning. If Y is a K(G, 1), then C∗(Ỹ ), the augmented

cellular chain complex for Ỹ , gives a resolution of Z by free left ZG-modules. Choose a lift of each

n-cell of Y in Ỹ ; this gives a free left ZG-module basis for Cn(Ỹ ). The paths in the graph Γn
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constructed from this data correspond essentially to formal sums of n-disks in Ỹ . Similarly, if Y is

a K(G × G, 1), then C∗(Ỹ ) gives rise to a resolution of Z by free (ZG,ZG)-bimodules, and paths

in Γn again correspond essentially to formal sums of n-disks in Ỹ .

Definition (Action of M on P (Γn)). Given m,m′ ∈ M and e = (x, σ, y, ε) ∈ E(Γn), we set

me := (mx,mσ,my, ε) and em := (xm,σm, ym, ε),

which are edges in E(Γn). Given a path p = e1 ◦ · · · ◦ ek ∈ P (Γn), we set

mp := (me1) ◦ · · · ◦ (mek) and pm := (e1m) ◦ · · · ◦ (ekm),

which are paths in P (Γn).

Definition (Addition in P (Γn)). Given x, y ∈ Fn−1 and e = (x1, σ, y1, ε) ∈ E(Γn), we set

x + e := (x + x1, σ, x + y1, ε) and e + x := (x1 + x, σ, y1 + x, ε),

which are edges in E(Γn). Given a path p = e1 ◦ · · · ◦ ek ∈ P (Γn), we set

x + p := (x + e1) ◦ · · · ◦ (x + ek) and p + x := (e1 + x) ◦ · · · ◦ (ek + x),

which are again paths in P (Γn). Finally, given p, q ∈ P (Γn), we set

p + q := (p + ι(q)) ◦ (τ(p) + q).

Note that in the above definition, x + p = p + x. Also, if p = (x) and q = (y) are constant

paths with x, y ∈ Fn−1, then p + q = (x + y).

Definition (Negation in P (Γn)). Define negation in P (Γn) by

−p = p−1

for any p ∈ P (Γn).

Definition (P (b)(Γn)).

P (b)(Γn) := {(p, q)|p, q ∈ P (Γn), ι(p) − ι(q) = τ(p) − τ(q)}

Definition (Dn, In, Jn).

Dn := {(p + q, q + p)|p, q ∈ P (Γn)}

In := {(p ◦ p−1, (0))|p ∈ P (Γn)}

Jn := {(p, p + x)|p ∈ P (Γn), x ∈ Fn−1}.

Definition (b-homology relation). A b-homology relation on P (Γn) is an equivalence relation

≈ ⊆ P (b)(Γn) such that:

(1) Dn ∪ In ∪ Jn ⊆ ≈.

(2) If m,m′ ∈ M and p ≈ q, then mp ≈ mq and pm′ ≈ qm′.

(3) If r, s ∈ P (Γn) and p ≈ q, then r + p ≈ r + q and p + s ≈ q + s.

7



For any set B ⊆ P (b)(Γn), the smallest possible b-homology relation containing B will be

called the homology relation generated by B and denoted ≈B .

Definition (n-dimensional homological finite derivation type). The monoid M has n-

dimensional homological finite derivation type, or type HFDTn, if there is an exact sequence

Fn−1 → Fn−2 → · · · → F3 → F2 → F1 → F0 → Z → 0

of free (ZM,ZM)-bimodules such that for every i ≥ 0, there is a finite set Bi ⊆ P (b)(Γi) for which

the b-homology relation generated by Bi is all of P (b)(Γi).

Note that, when applied to a monoid M , this homological definition does not require M to be

finitely presented. We can similarly define notions of left HFDTn and right HFDTn by replacing

the bimodules above by left or right ZM -modules and redefining the b-homology relation to include

only one-sided M -actions.

As noted in Sec. 2.1, the homological finiteness condition (left, right, or bi-) FPn is equivalent

to the condition that, for every partial finitely generated free (or projective) resolution Fk → · · · →

F0 → Z → 0 of (left, right, or bi-, resp.) ZM -modules with k < n, ker{Fk → Fk−1} is finitely

generated. We can define a similar condition in the framework of homological finite derivation

type.

Definition (Zn). The monoid M has type Zn if for every partial resolution

Fk
∂k→Fk−1 → · · · → F1 → F0 → Z → 0

of finite rank free (ZM,ZM)-bimodules with k < n, there is a finite set B ⊆ P (b)(Γk) for which

the b-homology relation generated by B is all of P (b)(Γk).

As mentioned above, we can similarly define the corresponding properties of left and right Zn

using left or right ZM -modules and using the b-homology relation restricted to the corresponding

side.

4. ker(∂n) and pairs of paths

In this section, we form a bimodule from the set P (b)(Γn) of pairs of paths in Γn, and show

(in Theorem 4.8) that this bimodule is isomorphic to ker(∂n).

Definition (P (b)(Γn)/ ∼). Define an equivalence relation on P (b)(Γn) by

(p, q) ∼ (r, s) ⇐⇒ p − r ≈∅ q − s,

where ∅ denotes the empty set. Define an action of M , addition, and negation in the set of

equivalence classes P (b)(Γn)/ ∼ to be the action, addition, and negation induced componentwise

from those in P (Γn). Extend the action linearly to an action of ZM on both sides. Define the

element 0̄ in P (b)(Γn)/ ∼ to be the equivalence class 0̄ = [(0), (0)], where (0) is the constant path

at the element 0 ∈ Fn−1.

Proposition 4.1. P (b)(Γn)/ ∼ is a (ZM,ZM)-bimodule.
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We will prove this proposition using a series of lemmas.

Lemma 4.2. Addition and action in P (Γn) are associative and distributive.

Proof. Suppose that p, q, r ∈ P (Γn), m,m′ ∈ M , and x, y ∈ Fn−1. Write p = e1 ◦ · · · ◦ ek and

ei = (xi, σi, yi, εi).

Using associativity of the monoid action on Fn and Fn−1 gives

m(m′ei) = m(m′xi,m
′σi,m

′yi, εi) = (m(m′xi),m(m′σi),m(m′yi), εi)

= ((mm′)xi, (mm′)σi, (mm′)yi, εi) = (mm′)ei.

Therefore
m(m′p) = m((m′e1) ◦ · · · ◦ (m′ek)) = (m(m′e1)) ◦ · · · ◦ (m(m′ek))

= ((mm′)e1) ◦ · · · ◦ ((mm′)ek) = (mm′)p.

Similarly, (mp)m′ = m(pm′) and p(mm′) = (pm)m′, so the monoid action is associative and

distributive.

Using associativity of addition in Fn−1 gives

(x + y) + ei = (x + y) + (xi, σi, yi, εi) = ((x + y) + xi, σi, (x + y) + yi, εi)

= (x + (y + xi), σi, x + (y + yi), εi) = x + (y + ei)

so
(x + y) + p = (x + y) + e1 ◦ · · · ◦ ek = (x + y) + e1 ◦ · · · ◦ (x + y) + ek

= x + (y + e1) ◦ · · · ◦ x + (y + ek) = x + (y + p).

Then (x+ p) + q = (x + p + ι(q)) ◦ (τ(x+ p) + q) = (x+ p+ ι(q)) ◦ (x+ τ(p)+ q) = x + [(p+ ι(q)) ◦

(τ(p) + q)] = x + (p + q). Finally,

(p + q) + r = [(p + ι(q)) ◦ (τ(p) + q)] + r

= ([(p + ι(q)) ◦ (τ(p) + q)] + ι(r)) ◦ (τ [(p + ι(q)) ◦ (τ(p) + q)] + r)

= [(p + ι(q) + ι(r)) ◦ (τ(p) + q + ι(r))] ◦ (τ(p) + τ(q) + r)

= (p + ι[(q + ι(r)) ◦ (τ(q) + r)]) ◦ (τ(p) + [(q + ι(r)) ◦ (τ(q) + r)])

= p + [(q + ι(r)) ◦ (τ(q) + r)] = p + (q + r),

giving associativity for addition.

Using the distributive property for Fn and Fn−1 gives

m(ei + x) = m(xi + x, σi, yi + x, εi) = (m(xi + x),mσi,m(yi + x), εi)

= ((mxi + mx),mσi, (myi + mx), εi) = mei + mx

and similarly m(y + ei) = my + mei. Also, it is straightforward to check ι(mq) = mι(q) and

τ(mp) = mτ(p). Then

m(p + q) = m[(p + ι(q)) ◦ (τ(p) + q)]

= [m(p + ι(q))] ◦ [m(τ(p) + q)] = (mp + ι(mq)) ◦ (τ(mp) + mq) = mp + mq.

The remaining proof of distributivity on the other side is similar.

9



Lemma 4.3. Suppose that p, q ∈ P (Γn) and x ∈ Fn−1. Then

(i) p + q ≈∅ q + p.

(ii) p − p ≈∅ (0).

(iii) p + x ≈∅ p.

(iv) −(p + q) ≈∅ −q − p.

(v) If p ≈∅ q, then −p ≈∅ −q.

(vi) If τ(p) = ι(q), then p ◦ q ≈∅ p + q. In particular, if p = e1 ◦ · · · ◦ en ∈ P (Γn) then p ≈∅

e1 + · · · + en.

Proof. The results in (i), (ii), and (iii) follow directly from the fact that Dn ∪ In ∪ Jn ⊆ ≈∅. If

p, q ∈ P (Γn) and x ∈ Fn−1, then (p + x)−1 = p−1 + x, so

−(p + q) = −[(p + ι(q)) ◦ (τ(p) + q)] = (τ(p) + q)−1 ◦ (p + ι(q))−1

= (τ(p) + q−1) ◦ (p−1 + ι(q)) = (ι(p−1) + q−1) ◦ (p−1 + τ(q−1))

= (q−1 + ι(p−1)) ◦ (τ(q−1) + p−1) = −p − q.

If p ≈∅ q, then In ∪ Jn ⊆ ≈∅ and Part (3) of the definition of a b-homology relation give that

−p ≈∅ −p + (0) ≈∅ −p + q − q ≈∅ −p + p − q ≈∅ (0) − q ≈∅ −q.

If τ(p) = ι(q), then the fact that Jn ⊆ ≈∅ implies

p + q = (p + ι(q)) ◦ (τ(p) + q) = (p + ι(q)) ◦ (ι(q) + q)

= (p + ι(q)) ◦ (q + ι(q)) = (p ◦ q) + ι(q)

≈∅ p ◦ q.

Proof of Proposition 4.1. First we show that addition, negation, and scalar multiplication are well-

defined. Suppose that [p, q] and [r, s] are elements of P (b)(Γn)/ ∼, where (p, q), (r, s) ∈ P (b)(Γn).

Then ι(p) − ι(q) = τ(p) − τ(q) and ι(r) − ι(s) = τ(r) − τ(s), so

ι(p + r) − ι(q + s) = ι[(p + ι(r)) ◦ (τ(p) + r)] − ι[(q + ι(s)) ◦ (τ(q) + s)]

= ι(p) + ι(r) − (ι(q) + ι(s)) = τ(p) + τ(r) − (τ(q) + τ(s))

= τ(p + r) − τ(q + s).

Therefore (p + r, q + s) ∈ P (b)(Γn) and [p, q] + [r, s] := [p + r, q + s] ∈ P (b)(Γn)/ ∼ . Suppose next

that [p, q] = [p′, q′] and [r, s] = [r′, s′] are elements of P (b)(Γn)/ ∼. Then p − p′ ≈∅ q − q′ and

r−r′ ≈∅ s−s′, so Part (3) of the definition of a b-homology relation says that (p−p′)+(r−r′) ≈∅

(q − q′) + (r − r′) ≈∅ (q − q′) + (s − s′). Then [p, q] + [r, s] = [p′, q′] + [r′, s′] and addition is

well-defined.

Also, ι(p−1) − ι(q−1) = τ(p) − τ(q) = ι(p) − ι(q) = τ(p−1) − τ(q−1), so −[p, q] := [−p,−q] ∈

P (b)(Γn)/ ∼ . If [p, q] = [p′, q′], then p − p′ ≈∅ q − q′. Lemma 4.3 (iv) and (v) say p′ − p ≈∅ q′ − q,

so −[p, q] = −[p′, q′] and negation is well-defined.

If m,m′ ∈ M , then

ι(mpm′) − ι(mqm′) = mι(p)m′ − mι(q)m′ = m(ι(p) − ι(q))m′

= m(τ(p) − τ(q))m′ = mτ(p)m′ − mτ(q)m′ = τ(mpm′) − τ(mqm′)
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so m[p, q]m′ := [mpm′,mqm′] ∈ P (b)(Γn)/ ∼ . The fact that scalar multiplication is well-defined

then follows directly from Part (2) of the definition of a b-homology relation.

Associativity of addition in P (b)(Γn)/ ∼ follows directly from associativity of addition in

P (Γn) (Lemma 4.2), and commutativity follows from Lemma 4.3(i) and (v). Lemma 4.3(ii) and

(iii) imply that the additive identity in P (b)(Γn)/ ∼ is 0̄, and −[p, q] is the additive inverse of [p, q].

Finally, associativity of the ZM actions and the distributive laws follow from the definition of the

ZM actions and Lemma 4.2.

In order to prove that the bimodule P (b)(Γn)/ ∼ is isomorphic to ker(∂n), we will need some

further notation to construct the homomorphism.

Definition (c : P (Γn) → Fn). For a vertex x ∈ Fn−1, set c((x)) = 0. If e = (x, σ, y, ε) ∈ E(Γn),

set c(e) = εσ. Finally, for any path p = e1 ◦ · · · ◦ ek ∈ P (Γn), set

c(p) =

k∑

i=1

c(ei).

Lemma 4.4. Suppose p, q ∈ P (Γn), m,m′ ∈ M , and ε = ±1.

(i) ∂n(c(p)) = τ(p) − ι(p).

(ii) c(εmpm′) = εmc(p)m′ and c(p + q) = c(p) + c(q).

(iii) If p ≈∅ q, then c(p) = c(q).

Proof. If p ∈ P (Γn), write p = e1 ◦ · · · ◦ ek with ei = (x1, σi, yi, εi). Then

∂n(c(p)) = ∂n(
k∑

i=1

εiσi) =
k∑

i=1

εi∂n(σi) =
k∑

i=1

τ(ei) − ι(ei) = τ(p) − ι(p),

giving (i). Part (ii) follows directly from the definition of the map c.

If p ≈∅ q, then there is a sequence p = z1 ≈∅ z2 ≈∅ · · · ≈∅ zl = q with, at each step,

zi = ri +si + ti, zi+1 = ri +ui + ti, si = εimivim
′
i, and ui = εimiwim

′
i, where ri, ti, vi, wi ∈ P (Γn),

mi,m
′
i ∈ M , εi = ±1, and either (vi, wi) or (wi, vi) is in Dn ∪ In ∪ Jn. It follows directly from the

definitions of c, Dn, In, and Jn that c(vi) = c(wi) for each i. Then

c(zi) = c(ri) + εimic(vi)m
′
i + c(ti) = c(ri) + εimic(wi)m

′
i + c(ti) = c(zi+1)

for each i, so c(p) = c(q).

Definition (ϕ : P (b)(Γn) → Fn). For any pair (p, q) ∈ P (b)(Γn), define ϕ((p, q)) = c(p) − c(q).

Proposition 4.5. im(ϕ) ⊆ ker(∂n) and ϕ induces a (ZM,ZM)-bimodule homomorphism

ϕ : P (b)(Γn)/ ∼ → ker(∂n)

giving the commutative diagram

P (b)(Γn)
ϕ

−→ ker(∂n)
↓ ‖

P (b)(Γn)/ ∼
ϕ

−→ ker(∂n).
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Proof. For (p, q) ∈ P (b)(Γn), using Lemma 4.4(i),

∂n(ϕ((p, q))) = ∂n(c(p))− ∂n(c(q)) = τ(p) − ι(p) − (τ(q) − ι(q)) = 0.

Therefore P (b)(Γn) is exactly the set of pairs of paths in Γn for which ∂n ◦ ϕ acts by 0, and

im(ϕ) ⊆ ker(∂n).

Suppose that [p, q], [r, s] ∈ P (b)(Γn)/ ∼ and [p, q] = [r, s]. Then p−r ≈∅ q−s, so Lemma 4.4(iii)

says that c(p−r) = c(q−s). Lemma 4.4(ii) says that c(p−r) = c(p)−c(r), so c(p)−c(r) = c(q)−c(s)

and ϕ((p, q)) = c(p) − c(q) = c(r) − c(s) = ϕ((r, s)). Then for the map ϕ([p, q]) := ϕ((p, q)) we

have ϕ([p, q]) = ϕ([r, s]) and ϕ is well-defined.

For any [p, q], [r, s] ∈ P (b)(Γn)/ ∼,

ϕ([p, q] + [r, s]) = ϕ([p + r, q + s]) = c(p + r) − c(q + s)

= c(p) − c(q) + c(r) − c(s) = ϕ([p, q]) + ϕ([r, s]).

If m,m′ ∈ M and ε = ±1, then

ϕ(εm[p, q]m′) = ϕ([εmpm′, εmqm′]) = c(εmpm′) − c(εmqm′)

= εmc(p)m′ − εmc(q)m′ = εmϕ([p, q])m′.

Therefore ϕ is also a bimodule homomorphism.

Proposition 4.6. ϕ is injective.

Proof. In view of Proposition 4.5, it suffices to show that ker(ϕ) = 0. Suppose [(p, q)] ∈ P (b)(Γn)/ ∼

with

ϕ([(p, q)]) = ϕ((p, q)) = c(p) − c(q) = c(p − q) = 0.

Let r := p − q, and write r = e1 ◦ · · · ◦ ek where ei = (xi, σi, yi, εi); then c(r) =
∑

εiσi = 0.

Suppose that r has at least one edge. Since Fn is Z-free on βn, it follows from
∑

εiσi = 0

that k = 2k′ for some k′ > 0 and that there exists a permutation π of {1, . . . , k} such that

εi + επ(i) = 0, σi = σπ(i), and π(π(i)) = i for all i. By definition of edges in Γn, we have that

yi − xi = ∂nσi = ∂nσπ(i) = yπ(i) − xπ(i). Let t := xπ(i) − xi = yπ(i) − yi ∈ Fn−1. Then

eπ(i) = (xπ(i), σπ(i), yπ(i), επ(i)) = (xi + (xπ(i) − xi), σi, yi + (yπ(i) − yi),−εi) = e−1
i + t.

Lemmas 4.2 and 4.3 imply that

ei + eπ(i) = ei + (e−1
i + t) ≈∅ (ei + e−1

i ) + t ≈∅ ei + e−1
i ≈∅ ei ◦ e−1

i ≈∅ (0).

Applying Lemmas 4.2 and 4.3 again along with Part (3) of the definition of b-homology relation

gives

r = e1 ◦ · · · ◦ e2k′ ≈∅

2k′∑

j=1

ej =
∑

i

(ei + eπ(i)) ≈∅ (0)

where the last sum ranges over indices i with one index from every (two element) orbit of the

permutation π.

Suppose now that k = 0 and r does not contain a single edge. In this case, also, we get

r ≈∅ (0). Thus in both cases, (0) ≈∅ r = p − q, and p = p + (0) ≈∅ p − q + q ≈∅ q. Then

p − (0) ≈∅ q − (0), so (p, q) ∼ ((0), (0)) and [(p, q)] = 0̄. This completes the proof of injectivity.

Proposition 4.7. ϕ : P (b)(Γn)/ ∼ → ker(∂n) is surjective.
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Proof. Suppose that z ∈ Fn and z 6= 0. Then z can be written (not necessarily uniquely) as

z =
∑̀

i=1

λiσi, λi = ±1, σi ∈ βn

with ` ≥ 1. Suppose moreover that z ∈ ker(∂n).

For 1 ≤ i ≤ `, define edges

ei :=

{
(Ni−1, σi,Ni−1 + ∂n(σi), 1), for λi = 1
(Ni−1 − ∂n(σi), σi,Ni−1,−1), for λi = −1

where N0 := 0 and

Ni :=
i∑

j=1

λj∂n(σj).

Then ι(ei) = Ni−1, τ(ei) = Ni, and c(ei) = λiσi. Therefore these edges form a path p := e1◦· · ·◦e`

with ι(p) = 0, τ(p) = N` = ∂n(z) = 0, and

c(p) =
∑̀

i=1

c(ei) =
∑̀

i=1

λiσi = z.

Define another path q to be the constant path q := (0) at 0 ∈ Fn−1, so that ι(q) = τ(q) = 0

and c(q) = 0. Thus (p, q) ∈ P (b)(Γn), and

ϕ(p, q) = c(p)− c(q) = z − 0 = z.

Therefore ϕ([p, q]) = z, as desired.

The following theorem now follows directly from Propositions 4.1, 4.5, 4.6, and 4.7.

Theorem 4.8. ker(∂n) and P (b)(Γn)/ ∼ are isomorphic (ZM,ZM)-bimodules.

A straightforward modification of the definition of P (b)(Γn)/ ∼ and the proofs in this section

also leads to the following.

Corollary 4.9. If ∂n is a homomorphism of left (respectively right) ZM -modules, then ker(∂n)

and P (b)(Γn)/ ∼ are isomorphic left (respectively right) ZM -modules.

5. The main theorem: HFDTn and FPn

In this section we prove the following.

Theorem 5.1. A group G has type HFDTn if and only if G has homological type FPn. A monoid

M has type HFDTn if and only if M has type bi- FPn.
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Since (bi-) FPn is a property of a monoid, rather than simply a property of a resolution, it

follows that the property HFDTn is also a monoid property. We will prove this theorem using

several propositions.

Lemma 5.2. Suppose that p, q ∈ P (Γn). Then

(i) [p, p] = 0̄.

(ii) If (p, q) or (q, p) is in Dn ∪ In ∪ Jn, then [p, q] = 0̄.

Proof. For p ∈ P (Γn), p − (0) ≈∅ p − (0), so [p, p] = [(0), (0)] = 0̄.

For (p + q, q + p) ∈ Dn, it follows from Lemma 4.3(i) that p + q − (0) ≈∅ q + p − (0), so

[p + q, q + p] = 0̄. The other parts of (ii) follow from Lemma 4.3(ii)-(iii).

Proposition 5.3. P (b)(Γn) is finitely generated by a b-homology relation if and only if P (b)(Γn)/ ∼

is a finitely generated (ZM,ZM)-bimodule.

Proof. Suppose first that P (b)(Γn) is finitely generated by a b-homology relation, so P (b)(Γn) = ≈B

for some finite subset B ⊆ P (b)(Γn). Let [p, q] ∈ P (b)(Γn)/ ∼. Since (p, q) ∈ P (b)(Γn), p ≈B q,

so there is a sequence p = z1 ≈B z2 ≈B · · · ≈B zl = q with, at each step, zi = ri + si + ti,

zi+1 = ri + ui + ti, si = εimivim
′
i, and ui = εimiwim

′
i, where ri, ti, vi, wi ∈ P (Γn), mi,m

′
i ∈ M ,

εi = ±1, and either (vi, wi) or (wi, vi) is in B ∪Dn ∪ In ∪ Jn. Then in P (b)(Γn)/ ∼ (using Lemma

5.2)

[p, q] = [p, p] + [(0), q − p] = 0̄ +
l∑

i=1

[(0), zi+1 − zi]

=
l∑

i=1

0̄ + [(0), zi+1 − zi] =
l∑

i=1

[zi, zi] + [(0), zi+1 − zi]

=
l∑

i=1

[zi, zi+1] =
l∑

i=1

[ri, ri] + εimi[vi, wi]m
′
i + [ti, ti]

=
l∑

i=1

0̄ + εimi[vi, wi]m
′
i + 0̄ = 0̄ +

∑
′ εimi[vi, wi]m

′
i

where the last sum ranges over only the indices i for which either (vi, wi) or (wi, vi) is in B. Then

the set

C := {[v,w] | either (v,w) or (w, v) is in B}

is a finite set which generates P (b)(Γn)/ ∼ as a (ZM,ZM)-bimodule.

Next suppose that P (b)(Γn)/ ∼ is finitely generated by a subset C as a (ZM,ZM)-bimodule.

Let B be a finite subset of P (b)(Γn) consisting of one representative of each element of C. Let

(p, q) be an arbitrary element of P (b)(Γn). Then

[p, q] =
l∑

i=1

εimi[pi, qi]m
′
i =

l∑

i=1

[εimipim
′
i, εimiqim

′
i]

for some mi,m
′
i ∈ M , εi = ±1, and (pi, qi) ∈ B. So p −

∑l
i=1 εimipim

′
i ≈∅ q −

∑l
i=1 εimiqim

′
i.

Since pi ≈B qi for each index i,
∑l

i=1 εimipim
′
i ≈B

∑l
i=1 εimiqim

′
i. It follows from Part (3) of the

definition of a b-homology relation that p ≈B q, so (p, q) ∈≈B . Therefore the finite set B generates

all of P (b)(Γn) as a b-homology relation.
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Proof of theorem 5.1. Suppose that M has type HFDTn. Then there is a resolution

Fn−1 → Fn−2 → · · · → F3 → F2 → F1 → F0 → Z → 0

of free (ZM,ZM)-bimodules such that for every 0 ≤ i ≤ n − 1, there is a finite set Bi ⊆ P (b)(Γi)

for which the b-homology relation generated by Bi is all of P (b)(Γi). Proposition 5.3 and Theorem

4.8 then say that ker(∂i) is finitely generated for each i. For 0 < i ≤ n − 1, im(∂i) = ker(∂i−1),

so both im(∂i) and ker(∂i) are finitely generated. If i = 0, then im(∂0) = Z, so again both im(∂0)

and ker(∂0) are finitely generated. Construct a set Si in Fi which is the union of a finite set of

generators for ker(∂i) together with a set consisting of a preimage (under the map ∂i) for each

element in a finite set of generators for im(∂i). Then Si is a finite set of generators for Fi. Hence

Fi is a free (ZM,ZM)-bimodule of finite rank for each 0 ≤ i ≤ n − 1, and ker(∂n−1) is finitely

generated. Therefore M has type bi- FPn.

Now suppose that M has type bi- FPn. Then there is a partial finitely generated projective

resolution of the integers by bimodules over the integral monoid ring of length n. With this

resolution, for each 0 ≤ i ≤ n − 1, ker(∂i) = im(∂i+1). So ker(∂i) is the image of a finitely

generated bimodule, and hence is also finitely generated, when 0 ≤ i ≤ n − 1. Then Proposition

5.3 and Theorem 4.8 say that P (b)(Γi) is finitely generated by a b-homology relation for each

0 ≤ i ≤ n − 1, and therefore M has type HFDTn.

If G is a group, then the proof above together with the equivalence of the property bi- FPn

and FPn in Proposition 2.1 show that G has type HFDTn if and only if G has type FPn. This

completes the proof of Theorem 5.1.

The following corollary results from a straightforward modification of the proofs above.

Corollary 5.4. A monoid or group M has type left (respectively right) HFDTn if and only if M

is of left (respectively right) homological type FPn.

We can apply Theorem 5.1 to show that the other finiteness condition Zn defined in Sec. 3 is

also equivalent to HFDTn.

Theorem 5.5. The following conditions are equivalent for any monoid or group M and any integer

n ≥ 0.

(i) M has type bi- FPn (if M is a group, M has type FPn).

(ii) M has type HFDTn.

(iii) M has type Zn.

Proof. It follows directly from Theorem 5.1 that (i) implies (ii) and (ii) implies (i). Next suppose

(i) holds, and suppose also that Fk → · · ·F0 → Z → 0 is a resolution consisting of finite rank free

bimodules with k < n. Then since M has type bi- FPn, ker(∂k) is finitely generated. Theorem

4.8 then says that P (b)(Γk)/ ∼ is finitely generated, and Proposition 5.3 applies to say that in this

case P (b)(Γk) is finitely generated by a b-homology relation. Therefore (i) implies (iii).

Finally, suppose that (iii) holds, and suppose that Fk → · · ·F0 → Z → 0 is a resolution

consisting of finite rank free bimodules with k < n. Since M satisfies the property Zn, P (b)(Γk)

is finitely generated by a b-homology relation. Applying Proposition 5.3 and Theorem 4.8 in the

opposite order shows that then ker(∂k) is finitely generated. Therefore (iii) implies (i) also.

The following also results from a straightforward modification of the proofs above.
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Corollary 5.6. The following conditions are equivalent for any monoid or group M and any

integer n ≥ 0.

i) M has type left (resp. right) FPn.

ii) M has type left (resp. right) HFDTn.

iii) M has type left (resp. right) Zn.
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