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Abstract. We study a class of inverse monoids of the form M = Inv〈X |w = 1〉,
where the single relator w has a combinatorial property that we call sparse. For a
sparse word w, we prove that the word problem for M is decidable. We also show
that the set of words in (X ∪X

−1)∗ that represent the identity in M is a deterministic
context free language, and that the set of geodesics in the Schützenberger graph of the
identity of M is a regular language.

Dedicated to the memory of Douglas Munn

1. Introduction

In a seminal paper in 1974, Douglas Munn [Mun74] introduced the notion of birooted
edge labeled trees (subsequently referred to as “Munn trees”) to solve the word problem
for the free inverse monoid. Munn’s work was extended by Stephen [Step90] who intro-
duced the notion of Schützenberger graphs to study presentations of inverse monoids.
The Schützenberger graphs of an inverse monoid presentation are the strongly connected
components of the Cayley graph of the presentation (or equivalently the restrictions of
the Cayley graph to the R-classes of the monoid). From a Schützenberger graph for an
inverse monoid presentation, the corresponding Schützenberger complex can be defined
as the 2-complex whose 1-skeleton is the Schützenberger graph and whose faces have
boundaries labeled by the sides of relations [Stei03].

One-relator inverse monoids of the form M = Inv〈X |w = 1〉, where w ∈ (X ∪X−1)∗,
have received some attention in the literature. Birget, Margolis, and Meakin [BMM94]
proved that the word problem is solvable for inverse monoids of the form Inv〈X | e = 1〉,
where e is an idempotent in the free inverse monoid (i.e., reduces to 1 in the free group).
Stephen [Step93] observed that if the inverse monoid M = Inv〈X |w = 1〉 is E-unitary,
then the word problem for M is decidable if there is an algorithm to decide, for any
word u ∈ (X ∪ X−1)∗, whether or not u = 1 in M . Furthermore, Ivanov, Margolis,
and Meakin [IMM01] proved that if w is cyclically reduced, then M = Inv〈X |w = 1〉
is E-unitary. Thus the word problem for M = Inv〈X |w = 1〉, w cyclically reduced, is
reduced to understanding the Schützenberger graph of 1 in M . This has been used to
solve the word problem in several special cases (see for example the paper by Margolis,

Meakin and Šuniḱ [MMS05]), but the problem remains open in general, even if w is a
cyclically reduced word.

The present paper is concerned with a class of one-relator inverse monoids of the form
M = Inv〈X |w = 1〉 where w ∈ (X ∪ X−1)∗ satisfies a combinatorial condition that
enables us to understand the structure of the Schützenberger complex corresponding to
the identity of M .

Let w = a0 · · · an−1 with each ai in X∪X−1. A cyclic subword q = w(i, j, ǫ) of w is a
nonempty word in (X ∪X−1)∗ of length at most n−1 of the form q = aiai+1ai+2 · · · aj−1
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if ǫ = 1 and q = a−1
i−1a

−1
i−2a

−1
i−3 · · · a

−1
j if ǫ = −1, where i, j ∈ Z/nZ. The zone of the cyclic

subword q = w(i, j, ǫ) is the subset of Z/nZ given by zone(q) := {i, i + ǫ, i + 2ǫ, ..., j}.

Definition 1.1. A word w ∈ (X ∪ X−1)∗ is sparse if w is freely reduced, l(w) > 1,
and whenever (qk, q

′

k) = (w(ik, jk, ǫk), w(i′k , j′k, ǫ
′

k)) are two pairs of cyclic subwords of w
satisfying qk = q′k in (X ∪ X−1)∗, zone(qk) 6= zone(q′k) and 0 ∈ zone(q′k) for k = 1, 2,
then

(sparse 1): zone(q1) ∩ zone(q′2) = ∅ = zone(q′1) ∩ zone(q2), and
(sparse 2): either zone(q1) ∩ zone(q2) = ∅ or both ǫ1ǫ

′
1 = ǫ2ǫ

′
2 and i1 − ǫ1ǫ

′
1i

′
1 =

i2 − ǫ2ǫ
′
2i

′
2 mod n.

For example one may see easily from this definition that the word w = aba−1b−1cdc−1d−1

and all of its cyclic conjugates are sparse. However the word w = aba−1b−1 is not
sparse. To see this, note that if q1 = w(3, 2,−1), q′1 = w(0, 1, 1), q2 = w(1, 2, 1) and
q′2 = w(0, 3,−1), then q1 = q′1 = a in (X∪X−1)∗ (where X = {a, b, c, d}) and q2 = q′2 = b
in (X ∪ X−1)∗, but 1 ∈ zone(q′1) ∩ zone(q2).

Roughly speaking, if w is a sparse word, then distinct occurrences of prefixes and
suffixes of w that occur elsewhere as cyclic subwords of w are separated by at least one
letter. This enables us to define an appropriate notion of a dual graph in the Schützenber-
ger complex of 1 and to prove that this dual graph is a tree. From this, we can encode the
information contained in the Schützenberger complex of 1 in a pushdown automaton.
We can also show that the faces of this Schützenberger complex are of finitely many
types and use this to analyze geodesics and cone types in the Schützenberger graph of
1. Specifically, we can prove the following theorems.

Theorem 1.2. If w ∈ (X∪X−1)∗ is sparse, then the word problem for M = Inv〈X |w =
1〉 is solvable.

Theorem 1.3. Let w be sparse and let M = Inv〈X |w = 1〉. Then:

(1) The language of words equal to 1 in M is deterministic context-free.
(2) The language of words related to 1 by Green’s relation R in M is deterministic

context-free.

Theorem 1.4. If w is a sparse word and M = Inv〈X |w = 1〉, then the language of
geodesics in the Schützenberger graph of 1 for M (i.e. the language of words labeling
geodesic paths starting at 1 in SΓ(1)) is a regular language. That is, the Schützenberger
graph of 1 has finitely many cone types.

In Section 2 of the paper we study some properties of sparse words that enable us
to understand how n-gons whose boundaries are labeled by a sparse word may fold
together. Section 3 provides information about sequences of complexes that are used to
approximate the Schützenberger complex of 1 for an inverse monoid with sparse relator.
Section 4 introduces a notion of dual graph to the Schützenberger complex of 1 and this
is exploited to provide a proof of Theorem 1.2. In Section 5 we introduce a pushdown
automaton that encodes the information contained in the Schützenberger complex of 1
for a one-relator monoid corresponding to a sparse word, and we use this to provide
a proof of Theorem 1.3. We also make use of these results to construct a finite state
automaton that accepts the geodesics in the Schützenberger graph of 1 for our monoid,
and thus provide a proof of Theorem 1.4.
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We refer the reader to the book of Lawson [Law98] for much of the basic theory of
inverse semigroups and to the paper by Stephen [Step90] for foundational ideas and
notation about presentations of inverse monoids.

2. Sparse Words

Throughout this section, w = a0 · · · an−1 will denote a fixed sparse word in (X∪X−1)∗

as defined in Definition 1.1 above.

Lemma 2.1. Every sparse word in (X ∪ X−1)∗ is cyclically reduced.

Proof. Let w = a0 · · · an−1 be a sparse word and suppose that a0 = a−1
n−1 = a. If

we let q1 = w(0,−1,−1), q′1 = w(0, 1, 1), q2 = w(0,−1,−1) and q′2 = w(0, 1, 1), then
q1 = q′1 = q2 = q′2 = a, but 0 ∈ zone(q1) ∩ zone(q′2). This contradicts condition (sparse
1) of Definition 1.1, so w must be cyclically reduced. �

Lemma 2.2. Every sparse word w ∈ (X ∪ X−1)∗ is primitive (i.e. w is not a proper
power in (X ∪ X−1)∗).

Proof. Suppose that w = um in (X ∪ X−1)∗ for some m > 1. The word u has length
l(u) > 0 since l(w) > 0. If we let q1 = w(0, l(u), 1) = q′2 and q′1 = w(−l(u), 0, 1) = q2, we
again immediately obtain a contradiction of (sparse 1). �

We will build 2-dimensional CW-complexes using information from the sparse word w
to define the attaching maps. To start, let P be a polygon with n sides; that is, P is a
CW -complex with n vertices, n edges and a single 2-cell. We designate a distinguished
vertex σ(P ) of P . We orient the edges of P in a clockwise direction, and label the edges
of P so that w is read clockwise from σ(P ) to σ(P ) on the boundary ∂P . In addition,
we label the vertices of P by the elements of Z/nZ, starting with 0 at σ(P ) and labeling
in order also in the clockwise direction.

We will build finite 2-complexes iteratively from the n-gon P by successively attaching
new copies of P at existing vertices and applying certain edge foldings. More specifically,
given a finite collection of copies F1,F2,...,Fm of P , first attach the vertex σ(F2) to any
vertex of F1 other than σ(F1). At the glued vertex v, if there are two edges incident
to v with either (1) the same orientation and edge label, or (2) opposite orientation
and edge labels that are inverse letters in X ∪ X−1, then we identify those edges to
a single 1-cell (and identify the vertices at the other ends to a single vertex). Repeat
this successively at all of the vertices of the complex until no further edge identification
according to rules (1)–(2) can be done, to obtain a new CW-complex with two 2-cells.
Denote the images of F1 and F2 in the quotient by F̄1 and F̄2, respectively, and denote
the image of σ(Fi) by σ̄(Fi) for i = 1, 2. At the i-th step, we attach Fi to the complex
F̄1∪· · ·∪ F̄i−1 by identifying σ(Fi) with a vertex v′ other than one of the σ̄(Fj) for j < i.
We again glue edges according to rules (1)–(2) (where the orientation and label of any
edge incident to a face F̄j can be considered to be that inherited from Fj), to obtain a
quotient CW-complex with i faces. (Note that at each step, the complex is finite, so this
process must stop.) We say that the face Fi is folded onto F̄1 ∪ · · · ∪ F̄i−1 at v′, or that
Fi is attached at v′.

This process is repeated to create a CW-complex with images F̄1,...,F̄m of the original
polygons as faces. For any index j and vertex v in F̄j , let i(Fj , v) denote the index (or
the set of indices) of the vertex (resp. vertices) in Fj that is sent to v via the canonical
map Fj → F̄1 ∪ · · · ∪ F̄m.
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Note that as a consequence of Lemma 2.1, the two edges of a single face F incident to
σ(F ) cannot be identified to a single edge in this procedure. The definition of sparse also
implies restrictions on edge gluings in complexes built from two or three faces, as the
following lemmas demonstrate. These lemmas will be applied to determine the structure
of the Schützenberger complex of 1 in Section 3.

Lemma 2.3 (The two-face lemma). Let F̄1 ∪ F̄2 be the CW-complex obtained by
folding one face F2 onto another face F1 at a vertex v 6= σ(F1). Then σ̄(F1) /∈ F̄1 ∩ F̄2.

Proof. Suppose to the contrary that σ̄(F1) ∈ F̄1 ∩ F̄2. Since F2 is folded onto the single
face F1, there must be a path in F̄1 ∩ F̄2 from σ̄(F1) to v = σ̄(F2). The preimage of this
path under the map F1 → F̄1 ∪ F̄2 is a path in ∂F1 starting at the vertex σ(F1), and
so this path defines a cyclic subword q1 of w starting at vertex 0 when w is viewed as a
word labeling ∂F1. Similarly, this path defines a cyclic subword q′1 of w ending at vertex
0 when w is viewed as a word labeling ∂F2. The two pairs of cyclic subwords (q1, q

′
1)

and (q2, q
′

2) := (q′1, q1) satisfy 0 ∈ zone(q1) ∩ zone(q′2), contradicting Definition 1.1. �

Lemma 2.4 (The three-face lemma). Suppose that the face F2 is folded onto the face
F1 with at least one pair of edges glued, and suppose that face F3 is folded onto a vertex
v ∈ F̄1 ∩ F̄2. Then no edges are glued via the folding process for F3; that is, no edge of
F3 can be glued to an edge of F̄1 ∪ F̄2, and no two edges of F̄1 ∪ F̄2 are identified.

Proof. By construction, F̄1 ∩ F̄2 is a connected non-empty edge path containing σ̄(F2)
and the vertex v = σ̄(F3), so there is a subpath p1 of F̄1 ∩ F̄2 with endpoints σ̄(F2) and
σ̄(F3). When viewed as a path in ∂F2, p1 determines a cyclic subword q′1 = w(i′1, j

′

1, ǫ
′

1)
such that zone(q′1) contains both 0 = i(F2, σ̄(F2)) and the index i(F2, v) of the vertex
corresponding to v. When viewed as a path in ∂F1, p1 determines a cyclic subword
q1 = w(i1, j1, ǫ1) such that zone(q1) contains i(F1, σ̄(F2)) and i(F1, v).

Suppose that some edge of F3 is glued onto an edge of F̄1 ∪ F̄2.
Case 1. F3 folds onto an edge of F̄1. Then there is a non-trivial path p2 in F̄1∩F̄3 with

endpoint v = σ̄(F3). When viewed as a path in ∂F3, p2 determines a cyclic subword q′2 =
w(i′2, j

′
2, ǫ

′
2) with 0 ∈ zone(q′2). When viewed as a path in ∂F1, p2 determines a cyclic word

q2 = w(i2, j2, ǫ2) such that i(F1, v) ∈ zone(q2). Then i(F1, v) ∈ zone(q1) ∩ zone(q2) 6= ∅.
But i1 − ǫ1ǫ

′
1i

′
1 = i(F1, σ̄(F2)) and i2 − ǫ2ǫ

′
2i

′
2 = i(F1, v), so i1 − ǫ1ǫ

′
1i

′
1 6= i2 − ǫ2ǫ

′
2i

′
2,

contradicting condition (sparse 2) of Definition 1.1. Thus Case 1 cannot occur.
Case 2. F3 folds onto an edge of F̄2. Then there is a non-trivial path p3 in F̄2∩F̄3 with

endpoint v = σ̄(F3). When viewed as a path in ∂F3, p3 determines a cyclic subword
q′3 = w(i′3, j

′

3, ǫ
′

3) with 0 ∈ zone(q′3). When viewed as a path in ∂F2, p3 determines
a cyclic subword q3 = w(i3, j3, ǫ3) with i(F2, v) ∈ zone(q3). In this case, i(F2, v) ∈
zone(q′1) ∩ zone(q3) 6= ∅, so condition (sparse 1) fails, a contradiction.

Since no edge of F3 is folded onto any edge of F̄1 ∪ F̄2, no additional edge folding can
occur in F̄1 ∪ F̄2. �

3. The Schützenberger complex SC(1)

Throughout this section, w will denote a fixed sparse word and M = Inv〈X |w = 1〉.
We recall that the Schützenberger graph of 1 for this presentation is the restriction of the
Cayley graph of M to the R-class of 1. We denote this graph by SΓ(1): its vertices are
the elements s ∈ M such that ss−1 = 1 in M and there is an edge labeled by x ∈ X∪X−1

from s to t if ss−1 = tt−1 = 1 and sx = t in M . We denote this edge by (s, x, t). Its
inverse edge is the edge (t, x−1, s) in SΓ(1), where we interpret (x−1)−1 = x, and this
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inverse pair is interpreted as a single topological edge. The Schützenberger complex of 1
is the complex SC(1) obtained from SΓ(1) by adding a face with boundary label w for
each closed path labeled by w in SΓ(1). Stephen’s iterative construction of a sequence
of approximations of the Schützenberger graph SΓ(1) may easily be adapted to yield
a sequence of approximations of the Schützenberger complex SC(1). In particular, we
may construct such a sequence of complexes in the following way.

Start with a trivial complex S0 consisting of one vertex v0 and no edges or faces.
Take a copy F1 of the n-gon P , identify its start vertex σ(P ) with v0, and denote this
complex by S1. As in Section 2, we build a sequence of complexes S1 = F̄1, S2 = F̄1∪ F̄2,
S3 = F̄1 ∪ F̄2 ∪ F̄3, ... by successively folding faces Fi onto F̄1 ∪ F̄2 ∪ · · · ∪ F̄i−1 at vertices
vi−1 ∈ Si−1 at which no face has yet been attached, in such a way that d(v0, vi−1) is as
small as possible, where d is the path metric in Si−1. Lemma 2.2 guarantees that such
a vi−1 exists. To see this, note that if no such vi−1 exists, then SΓ(1) = Si−1, so SΓ(1)
is finite. Thus if x is the first letter in w, since xj labels a path in SΓ(1) for each j > 0
we see that x is a torsion element in M (i.e. xj = xk for some k 6= j). It follows that x
must be a torsion element of G = Gp〈X|w = 1〉, but G is torsion free if w is primitive.

A sequence of complexes obtained in the above manner is referred to as a Schützen-
berger approximation sequence. Since vi = σ̄(Fi+1) is chosen so as to minimize the
distance from v0, we can see that every vertex of Si is the start vertex of some face in Si+j

for some j. From the results of Stephen [Step90], the corresponding sequence of 1-skeleta
of a Schützenberger approximation sequence has a direct limit that is independent of the
choice of the vertices vi, and this direct limit is SΓ(1). By an argument similar to the
formal category theoretical argument in [Step90] used to show this, it follows that the
Schützenberger approximation sequence of complexes has a direct limit, and since the
approximation sequence attaches faces whenever a closed path labeled by w is attached,
the limit of the Schützenberger approximation sequence is the Schützenberger complex
SC(1).

Theorem 3.1. Let S0, S1, S2, . . . be any Schützenberger approximation sequence for
SC(1) corresponding to a sparse word w. Then for all m ≥ 0 and for all distinct faces
F̄i, F̄j , F̄k, F̄l in Sm

(1) The natural map Fi → F̄i is an embedding of Fi into Sm.
(2) If F̄i ∩ F̄j 6= ∅, then F̄i ∩ F̄j is a connected path such that either σ̄(Fi) ∈ F̄j with

σ̄(Fj) /∈ F̄i, or σ̄(Fj) ∈ F̄i with σ̄(Fi) /∈ F̄j .
(3) If F̄i ∩ F̄j ∩ F̄k 6= ∅, then there exists r ∈ {i, j, k} with F̄i ∩ F̄j ∩ F̄k = σ̄(Fr) and

F̄r shares no other vertices with the other two faces.
(4) F̄i ∩ F̄j ∩ F̄k ∩ F̄l = ∅.
(5) The natural map from Sm−1 to Sm is an embedding.

Proof. The proof proceeds by induction on m. The result is clear if m is 0 or 1. Suppose
that the result is true for approximation sequences of length m− 1. Let v be the vertex
of Sm−1 at which Fm is attached to Sm−1. From part (4) of the induction assumption,
at most three faces contain the point v.

Case 1. Suppose that v is on the boundary of three faces in Sm−1. Then by part
(3) of the induction assumption, one of these faces F̄ satisfies v = σ̄(F ). But then the
algorithm for constructing the Schützenberger approximation sequence would not attach
Fm at v also. Hence Case 1 cannot occur.

Case 2. Suppose that v is on the boundary of exactly two faces F̄i and F̄j in Si−1.
By part (2) of the induction hypothesis, we may assume without loss of generality that
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σ̄(Fi) ∈ F̄j and again by this induction hypothesis there is a non-trivial path in F̄i ∩ F̄j

from v to σ̄(Fi). Then by the three-face lemma, no edge of Fm is glued onto any edge
of F̄i ∪ F̄j at v, and hence no edge of Fm is glued onto any edge of Sm−1 at all. Hence
properties (1)–(5) of the statement of the theorem hold for Sm.

Case 3. Suppose that v is on the boundary of exactly one face F̄i of Sm−1. Consider

the complex Ŝm obtained from Sm−1 and Fm by just gluing edges of Fm and F̄i starting

from v, and no additional edge foldings. Then F̄i∩F̂m is a connected path. If there exists
a vertex v′ in F̄i∩F̂m with v′ 6= v = σ̂(Fm), the two-face lemma says that v′ 6= σ̄(Fi) also.
In this case the three-face lemma then says that any other face incident to v′ cannot
contain an edge that can be identified with an edge of either F̄i or F̂m in a further folding
process. Thus in any case no further edges can be glued, and Ŝm = Sm. Hence properties
(1)–(5) of the statement of the theorem hold for Sm. �

Using part (5) of Theorem 3.1, we may consider S0 ⊂ S1 ⊂ S2 ⊂ S3 ⊂ · · · , and so
SC(1) = ∪∞

m=0Sm for any Schützenberger approximation sequence constructed as above.
Hence the corollary below follows immediately.

Corollary 3.2. Properties (1)–(5) of Theorem 3.1 hold with Sm replaced by SC(1).

For every Schützenberger approximation sequence, there is a vertex v0 which is the
unique vertex incident to only one face in the direct limit, and so there is a unique vertex
in SC(1), which we will also call v0, that is incident to only one face, which we will refer
to throughout as the face F1. For any face A of SC(1), the sparse property of w implies
that there is only one vertex in ∂A that can be the start vertex σ̄(A), and only one
possible orientation starting from this vertex in which the word w labels the boundary
path.

For distinct faces A and B of SC(1), we define A < B if the face A must be attached
before the face B in every Schützenberger approximation sequence. The corresponding
partial ordering ≤ is the face ordering on the faces of SC(1). This partial ordering is
well-founded, and the face F1 is a minimal element.

Corollary 3.3 (Order Corollary). Let v be a vertex of SC(1), and let B be the face
with v = σ̄(B).

(1) If v is incident to exactly one other face A, then A < B.
(2) If v is incident to two other faces A and C with σ̄(C) ∈ A, then A < B and

A < C.
(3) If v is incident to a face A and A ∩ B contains at least one edge, then A < B.

Proof. Let S0, S1, S2, . . . be any Schützenberger approximation sequence for SC(1) cor-
responding to a sparse word w, with face Fi attached to Si−1 in the construction of Si,
as above. In the case that v is incident only to faces A = F̄j and B = F̄k, the vertex v
must exist in a complex Si before B can be attached, and so we must have j < k.

In the case that v is also incident to a third face C = F̄l with σ̄(C) ∈ A, then Theorem
3.1 says that A ∩ C contains a connected non-empty edge path from σ̄(C) to v, and so
at the vertex σ̄(C), an edge of C is glued to an edge of A. Again applying Theorem 3.1,
no face other than A and C can be incident to σ̄(C) in any of the Si. Then as in the
paragraph above, we have j < l. Now the face Fk can be attached at v only after v has
been built in the sequence, and hence only after at least one of Fj , Fl has been attached.
Therefore j < k also.
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Finally, if v ∈ A and A∩B contains at least one edge, then Theorem 3.1 says that no
other face can be incident to v, and so the first paragraph of this proof applies. �

4. The dual graph and the word problem

In this section we define a notion of a dual graph of the Schützenberger complex SC(1)
for an inverse monoid M = Inv〈X |w = 1〉 corresponding to a sparse word w. We show
that this dual graph is a tree and we make use of this to provide a solution to the word
problem for M .

Definition 4.1. Let w be a sparse word. The dual graph of SC(1) for M = Inv〈X |w =
1〉 is the directed graph D with

• vertex set V (D) given by the set of faces of SC(1), and
• set E(D) of directed edges (A,B) (oriented from A to B) for A,B ∈ V (D)

satisfying A < B in the face ordering and A ∩ B 6= ∅ in SC(1).

As a consequence of Corollaries 3.2 and 3.3, the definition of E(D) can also be phrased
purely in terms of the combinatorial properties of SC(1), namely (A,B) is a directed
edge in D if and only if A 6= B, σ̄(B) ∈ A, and whenever C ∈ V (D) with σ̄(B) ∈ C then
σ̄(C) ∈ A.

Proposition 4.2. Let w be a sparse word and M = Inv〈X |w = 1〉. Then the dual graph
D of SC(1) is a directed, rooted, infinite tree (with root F1) in which each vertex has at
most l(w) − 1 children.

Proof. Recall that the face F1 is the only face of SC(1) containing the unique vertex v0

of SC(1) incident to only one face. Let A 6= F1 be any other face in SC(1), and assume
by Noetherian induction that for all faces B < A with respect to the well-founded face
ordering, there is a directed edge path in D from F1 to B. From Corollary 3.2, there are
either 2 or 3 faces incident to the vertex σ̄(A) in SC(1), including A.

If there is only one other face B incident to σ̄(A), then the Order Corollary 3.3 implies
that B < A. Since σ̄(B) ∈ A ∩ B 6= ∅, then (B,A) ∈ E(D). The concatenation of the
path from F1 to B from the induction assumption with this edge (B,A) then gives a
directed edge path in D from F1 to A.

On the other hand, if there are two other faces B and C incident to σ̄(A), then
Corollary 3.2 says that one of these faces contains the σ̄ vertex of the other; without loss
of generality, suppose that σ̄(C) ∈ B. Then the Order Corollary 3.3 again implies that
B < A, and as in the previous paragraph we obtain a directed path in D from F1 to A.
Hence D is connected.

Suppose that D is not a tree. Then there is an undirected circuit in this graph.
Suppose that two edges of this circuit have a common target; that is, suppose that

there are edges (A,C), (B,C) ∈ E(D) with A 6= B. Using the combinatorial description
of E(D) above, then σ̄(C) ∈ A ∩ B. From Corollary 3.2 part (2), A ∩ B is a path
containing one of σ̄(A) or σ̄(B) but not both. This contradicts the existence of one of
the edges (A,C), (B,C), and so the circuit must also be a directed circuit.

The consecutive vertices A1, A2, ..., Ak following the directed edges in this circuit must
then satisfy A1 < A2 < · · ·Ak < A1 in the face ordering, which is again a contradiction.
Hence D is a directed tree with root F1.

Since each face A of SC(1) has l(w)− 1 vertices other than its vertex σ̄(A), there are
at most l(w) − 1 directed edges in D with source vertex A. In addition, as remarked in
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Section 3, the fact that w is primitive guarantees SC(1) is infinite. Therefore the tree D
must be infinite. �

To simplify notation later, it will be helpful to consider a slight modification of D.
The augmented dual graph D′ is obtained from D by adding an additional vertex v0

to D and an additional directed edge from v0 to F1. Then D′ is a directed rooted tree
with root v0. Using standard language for rooted trees, if (A,B) is a directed edge in
D′, we call A the parent of B, and B a child of A.

Define a map Ω : V (SC(1)) → V (D′) as follows. For each vertex v 6= v0 in SC(1), let
Ω(v) be the unique face of SC(1) that is closest to v0 in D′ from among the faces that
are incident to v, and let Ω(v0) := v0.

For any face A of SC(1), then Ω(σ̄(A)) is the parent of A, and so Ω(σ̄(A)) < A; i.e.,
Ω(σ̄(A)) must be attached before A in any Schützenberger approximation. By Corollaries
3.2 and 3.3, in the folding process edges of A can be glued to edges of Ω(σ̄(A)) but not
to edges of any other face, and the glued edges are a connected path. Recall that the
boundary ∂A of the polygon A is labeled by the word w, when read starting at the vertex
σ(A) in the clockwise direction. The connected set γ(A) := A ∩ Ω(σ̄(A)), then, can be
regarded as the image of a (“gluing”) path (which we will also call γ(A)) going clockwise
around ∂A from the (“reverse”) vertex ρ(A) to the (“forward”) vertex φ(A). Note that if
no edges are glued when A is attached to its parent Ω(σ̄(A)), then ρ(A) = σ̄(A) = φ(A)
and γ(A) is this point.

Lemma 4.3. Let A be a face of the complex SC(1) for a sparse word w.

(1) The lengths l(w) and l(γ(A)) satisfy l(γ(A)) ≤ 1
2 l(w) − 1.

(2) If v is a vertex in γ(A), then Ω(v) = Ω(σ̄(A)).
(3) If v is a vertex in ∂A \ γ(A), then Ω(v) = A.

Proof. The path γ(A) determines a cyclic subword q′ of w when viewed as a path in ∂A,
and determines a cyclic subword q when viewed as a path in the parent ∂Ω(σ̄(A)) of A.
Since w is sparse we must have zone(q′) ∩ zone(q) = ∅, (take (q1, q

′
1) = (q2, q

′
2) = (q, q′)

in Definition 1.1), and so there must also be at least one edge between the endpoints of
these cyclic subwords on both sides. Then l(w) ≥ 2l(γ(A)) + 2.

If v is a vertex in γ(A), then by definition of the set γ, the point v is also in the
parent Ω(σ̄(A)) of A. If there is a third face C incident to v in SC(1), then by the order
corollary and the definition of D′, the face Ω(σ̄(A)) is also the parent of C.

For a vertex v in ∂A \γ(A), then v = σ̄(B) for another face B of SC(1). If there is no
other face incident to v, the order corollary then says A < B. If C is a third face incident
to v, then Corollary 3.2 says that A and C must share at least one edge in common, and
either σ̄(A) is in C, or σ̄(C) is in A. The order corollary then says that the face among
A and C that contains the start vertex σ̄ of the other is the parent of the pair. However,
since v /∈ Ω(σ̄(A)), we must have C 6= Ω(σ̄(A)), and hence σ̄(C) ∈ A and A is the parent
of both B and C. �

Let the 1-skeleton SΓ(1) of the 2-complex SC(1) have the path metric dSΓ, and let
the augmented dual graph have path metric dD′ . The following theorem shows that
geodesics in these metric spaces are closely related.

Theorem 4.4 (Geodesic Theorem). Let p be any geodesic edge path in SΓ(1) from
v0 to a vertex v. Let v0, v1, ..., vk = v be the successive vertices in the path p. Then
for all i, either Ω(vi) = Ω(vi+1) or Ω(vi) is the parent of Ω(vi+1) in D′, and the edge
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from vi to vi+1 is contained in Ω(vi+1). Moreover, whenever Ω(vi) < Ω(vi+1), then
vi ∈ {ρ(Ω(vi+1)), φ(Ω(vi+1))}.

Proof. We prove this by induction on the length k of the edge path p. If k = 0, then p is
the constant path at v0 in SC(1), and there is no other vertex. If k = 1, then p follows
a single edge from v0 to v1 6= v0. Then Ω(v0) = v0 is the parent of Ω(v1) = F1 in D′.

Suppose that k ≥ 2. The prefix p̂ of the path p with vertices v0, ..., vk−1 is also a
geodesic path in SΓ(1), and so by induction the conditions on the pair Ω(vi),Ω(vi+1) in
the theorem hold for all 0 ≤ i ≤ k − 2. The vertex vk−1 6= v0, so Corollary 3.2 says that
there are at least two faces A := Ω(vk−1) and B with σ̄(B) = vk−1, and possibly a third
face C, incident to the vertex v in SC(1). By definition of Ω and the Order Corollary,
we have A < B and A < C. The edge e from vk−1 to vk must be contained in at least
one of these faces.

Case 1. Suppose that e is contained in A. If vk is in the path γ(A), then Lemma 4.3
implies that Ω(vk) = Ω(σ̄(A)), but since Ω(vk−1) = A, the same lemma implies that vk−1

is not in γ(A). Then vk must be one of the endpoints ρ(A), φ(A) of γ(A). By induction,
the prefix p̂ of p traversed one of these endpoints, and since p is a geodesic, p̂ must have
traversed the endpoint v′ of γ(A) that is not vk. However, this implies that a suffix of
p is a geodesic in ∂A from v′ to vk that goes through the point vk−1 not in γ(A). This
contradicts Lemma 4.3(1), and so vk must lie in ∂A \ γ(A). Lemma 4.3(3) then implies
that Ω(vk) = A = Ω(vk−1).

Case 2. Suppose that e is contained in a child E of the face A, but not in A. That
is, E is one of the faces B or C. In this case, since vk is not contained in A ∩ E, then
Lemma 4.3(3) says that Ω(vk) is E, and we have that Ω(vk−1) = A is the parent of
Ω(vk). Moreover, since vk−1 is in A ∩ E but vk is not, we have that vk−1 is one of the
endpoints ρ(E), φ(E) of γ(E). �

We can now provide a solution to the word problem for M .

Proof of Theorem 1.2. As noted in Section 1, it is sufficient to prove that there is
an algorithm that takes a word u ∈ (X ∪ X−1)∗ as input, and outputs whether or not
u = 1 in M . Given a sparse word w, the following procedure is such an algorithm for
M = Inv〈X |w = 1〉.

Let L := l(u) be the length of the word u. The algorithm follows the construction
of a Schützenberger approximation sequence as described at the beginning of Section
3, attaching a face at each step to a vertex whose distance to v0 in the approximation
complex is minimal from among all of those vertices that are not yet the start vertex (σ̄)
of a face. Continue this process until the next vertex at which a face is to be attached
has distance L · l(w) + 1 from v0; the process stops at this time, with an approximation
complex S. Since each complex in this sequence is locally finite, this process is finite.

From Theorem 3.1 we know that S embeds in SC(1). From the Geodesic Theorem
4.4, we have that for each vertex v in S, any geodesic path p in SΓ(1) from v0 to v is
contained in the union of the the faces labeling vertices of the geodesic in D′ from v0 to
Ω(v). By the definition of the map Ω, these are the faces that must be constructed in
the Schützenberger approximation sequence before the face Ω(v), together with the face
Ω(v) which must be the first face containing v constructed in the sequence. Hence all of
these faces are also in S, as is the path p. Therefore the path metric dS in the 1-skeleton
of S is the same as the metric inherited from SΓ(1).
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We claim that every face A of SC(1) with dD′(v0, A) ≤ L lies in S. Suppose not; that
is, suppose that there is a face A with dD′(v0, A) ≤ L and A not in S, and choose A to
have minimal distance from v0 in D′ among all such faces. Then the parent Ω(σ̄(A)) of
A satisfies dD′(v0,Ω(σ̄(A))) = dD′(v0, A)− 1, and so Ω(σ̄(A)) lies in S. But the previous
paragraph and Theorem 4.4 imply that dS(v0, σ̄(A)) = dSΓ(v0, σ̄(A)) < L · l(w), and so
S has a vertex σ̄(A) within L · l(w) of v0 that is not the start vertex of an attached face,
giving the required contradiction.

Now let v′ be any vertex of SC(1) with dSΓ(v0, v
′) ≤ L. It follows from Theorem 4.4

that dD′(v0,Ω(v′)) ≤ L also, and so by the previous paragraph, Ω(v′), and hence also v′,
is in the finite complex S. Putting these results together, we have that u labels a path
from v0 to v0 in SC(1) if and only if u labels a path from v0 to v0 in S. Since u = 1 in
M if and only if u labels a path in SC(1) from v0 to v0, the algorithm outputs u = 1 if
u labels a path from v0 to v0 in S, and outputs u 6= 1 in M otherwise. �

5. Languages of geodesics and words representing 1

Throughout this section, w is a sparse word and M = Inv〈X |w = 1〉.

Lemma 5.1. Let A be any face in SC(1). There is a unique point xA in ∂A \ γ(A)
satisfying dSΓ(v0, xA) ≥ dSΓ(v0, y) for all y ∈ ∂A.

Proof. First consider points in the set T := ∂A \ γ(A). Lemma 4.3(3) and the Geodesic
Theorem 4.4 imply that every geodesic from v0 to a point y in T must traverse one of the
points ρ(A), φ(A), and then follow edges in the path along T to y. Let a := dSΓ(v0, ρ(A)),
b := dSΓ(v0, φ(A)), and q := l(γ(A)), and let p be the length of the edge path in T from
ρ(A) to φ(A). The triangle inequality together with Lemma 4.3(1) give |b−a| ≤ q ≤ p−1.
Let x be the point in T that is a distance 1

2(p + (b − a)) < p from the endpoint ρ(A);

then x is a distance 1
2(p + (a − b)) along T from φ(A). Now the concatenation of a

geodesic path from v0 to ρ(A) followed by the geodesic in T from ρ(A) to x has the
same length 1

2(p + a + b) as the concatenation of a geodesic path from v0 to φ(A)
followed by the geodesic in T from φ(A) to x, and hence both of these concatenations
are geodesics from v0 to x. Since every other point y ∈ T lies on one of these paths, we
have dSΓ(v0, x) > dSΓ(v0, y).

Similarly, let z be the point in γ(A) that is a distance 1
2 (q + (b − a)) ≤ q from the

endpoint ρ(A) along the path γ(A), and hence a distance 1
2(q + (a− b)) from φ(A). The

concatenation of a geodesic from v0 to either ρ(A) or φ(A), together with the geodesic
along γ(A) from that endpoint to z, has length 1

2(q + a + b), and every point y in
γ(A) lies on one of these path concatenations. Hence for all y ∈ γ(A), we also have
dSΓ(v0, x) = 1

2(p + a + b) > 1
2(q + a + b) ≥ dSΓ(v0, y). �

For a face A of SC(1), choose Z representatives î(A, ρ(A)) and î(A,φ(A)) of the

indices i(A, ρ(A)) and i(A,φ(A)) from Z/nZ, respectively, satisfying 0 ≤ î(A,φ(A)) <

î(A, ρ(A)) ≤ n = l(w). Similarly, for each vertex v in ∂A \ γ(A), let î(A, v) be the

representative of i(A, v) satisfying 0 < î(A, v) < n; from Lemma 4.3, then î(A,φ(A)) <

î(A, v) < î(A, ρ(A)).

Define kA := 1
2 [̂i(A, ρ(A)) + î(A,φ(A)) + (dSΓ(v0, ρ(A)) − dSΓ(v0, φ(A)))]. The proof

above shows that the point xA lies at the index i(A,xA) = kA (mod nZ) if xA is a vertex,
otherwise xA lies at the midpoint of the edge whose endpoints y, z are the vertices with
indices i(A, y), i(A, z) given by kA ± 1

2 (mod nZ).
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Definition 5.2. For any face A of SC(1), we define the associated triple ft(A) :=

(̂i(A, ρ(A)), î(A,φ(A)), kA). We define an equivalence relation ∼ft on the set of faces of
SC(1) by A ∼ft B if and only ft(A) = ft(B); in this case, we say that A and B have the
same face type. Define an equivalence relation ∼ft on the set of vertices of SC(1) by
u ∼ft v if and only if Ω(u) ∼ft Ω(v) and i(Ω(u), u) = i(Ω(v), v). Denote the equivalence
class of a vertex or face z relative to ∼ft by [z].

Note that there are only finitely many face types, and similarly only finitely many
∼ft-equivalence classes of vertices. For example, it follows from this definition that if A
is a face of SC(1) that is attached to Ω(σ̄(A)) at the vertex σ̄(A) in such a way that no
edge of A folds onto Ω(σ̄(A)), then the triple for A is (n, 0, n/2), and A ∼ft F1. Since
Ω(v0) is not a face of SC(1), the ∼ft-equivalence class [v0] contains only the vertex v0.

The following lemma will be used in the constructions of a push-down automaton and
a finite state automaton later in this section.

Lemma 5.3. In SC(1) let u1, u2 be vertices with u1 ∼ft u2 and let e1 = (u1, x, v1) be
an edge. Suppose that either
(i) Ω(u1) = Ω(v1),
(ii) (Ω(u1),Ω(v1)) ∈ E(D′), or
(iii) (Ω(v1),Ω(u1)) ∈ E(D′) and σ̄(Ω(u1)) ∼ft σ̄(Ω(u2)).
Then there is an edge e2 = (u2, x, v2) in SC(1) with v1 ∼ft v2 satisfying, respectively,

(i) Ω(u2) = Ω(v2) and î(Ω(u1), v1) lies between î(Ω(u1), u1) and kΩ(u1) (inclusive) if and

only if î(Ω(u2), v2) lies between î(Ω(u2), u2) and kΩ(u2).

(ii) (Ω(u2),Ω(v2)) ∈ E(D′) and σ̄(Ω(v1)) ∼ft σ̄(Ω(v2)), or
(iii) (Ω(v2),Ω(u2)) ∈ E(D′).

Proof. Suppose first that u1 = v0. Then u1 ∼ft u2 implies that u2 = v0 = u1, and the
result of the lemma follows. For the remainder of the proof, we assume that u1 6= v0,
and as a consequence u2 6= v0. Let Ai be the face Ω(ui) for i = 1, 2. By definition of
u1 ∼ft u2, then A1 ∼ft A2 and i(A1, u1) = i(A2, u2).

Suppose that (i) Ω(u1) = Ω(v1) holds. Then the edge e1 lies in the face A1. The
faces A1 and A2 are copies of the same polygon with the same boundary label word
w, and we have i(A1, u1) = i(A2, u2), hence there is an edge e2 = (u2, x, v2) in the
boundary of A2 with i(A1, v1) = i(A2, v2). From the definition of A1 ∼ft A2, we have

î(A1, φ(A1)) = î(A2, φ(A2)) and î(A1, ρ(A1)) = î(A2, ρ(A2)). From Lemma 4.3, the

edge e1 lies in ∂A1 \ γ(A1), and so we have î(A1, φ(A1)) < î(A1, v1) < î(A1, ρ(A1)).

Then î(A2, φ(A2)) < î(A2, v2) < î(A2, ρ(A2)), and so v2 lies in ∂A2 \ γ(A2). Applying
the same lemma again gives Ω(v2) = A2. Then both v1 ∼ft v2 and the betweenness
condition follow directly.

Next suppose that (ii) (Ω(u1),Ω(v1)) ∈ E(D′). In this case, B1 := Ω(v1) is a face of
SC(1). Since A1 < B1, the edge e1 lies in B1, the vertices u1 and σ̄(B1) (which may or
may not be the same point) both lie in A1 ∩ B1, and v1 lies in B1 \ γ(B1). Let B2 be
the face of SC(1) whose vertex σ̄(B2) lies at the vertex of ∂A2 satisfying i(A2, σ̄(B2)) =
i(A1, σ̄(B1)). Again using the fact that the pairs of polygons A1, B1 and A2, B2 have the
same boundary labels, the gluings of B2 onto A2 correspond to the gluings of B1 onto A1.
Hence u2 ∈ A2∩B2, and there is an edge (u2, x, v2) in B2 with v2 /∈ A2. Since Ω(u2) = A2,

we have A2 < B2, and so (A2, B2) ∈ E(D′). In addition, we have î(C1, ρ(B1)) =

î(C2, ρ(B2)) and î(C1, φ(B1)) = î(C2, φ(B2)) for Ci ∈ {Ai, Bi} and î(B1, v1) = î(B2, v2).

Since B1 = Ω(v1), then î(B1, v1) lies strictly between î(B1, φ(B1)) and î(B1, ρ(B1)), and
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hence î(B2, v2) lies strictly between î(B2, φ(B2)) and î(B2, ρ(B2)), giving B2 = Ω(v2).
The property σ̄(Ω(v1)) ∼ft σ̄(Ω(v2)) follows immediately. Now A1 ∼ft A2 implies that
kA1

= kA2
. Lemma 5.1 shows that dSΓ(v0, ρ(Bi)) = dSΓ(v0, xAi

)−dSΓ(xAi
, ρ(Bi)) for i =

1, 2, and similarly for φ(Bi). Then dSΓ(v0, ρ(B1)) − dSΓ(v0, φ(B1)) = dSΓ(xA1
, φ(B1)) −

dSΓ(xA1
, ρ(B1)) = |kA1

− î(A1, φ(B1))| − |kA1
− î(A1, ρ(B1))|. Since all of these numbers

are the same if the subscript 1 is replaced by 2 everywhere, then we have dSΓ(v0, ρ(B1))−
dSΓ(v0, φ(B1)) = dSΓ(v0, ρ(B2)) − dSΓ(v0, φ(B2)). This shows that kB1

= kB2
, which is

the last item needed to show that B1 ∼ft B2. Therefore v1 ∼ft v2.
Finally, suppose that (iii) (Ω(v1),Ω(u1)) ∈ E(D′) and σ̄(Ω(u1)) ∼ft σ̄(Ω(u2)). Sup-

pose further that σ̄(A1) = v0. Then v1 = v0 and A1 = Ω(u1) = F1. In this case
σ̄(Ω(u2)) = v0, and so A1 = A2, u1 = u2, and the lemma holds.

On the other hand, suppose that σ̄(A1) = σ̄(Ω(u1)) 6= v0. Then Ei := Ω(σ̄(Ai) is
a face of SC(1) for i = 1, 2, and we also have (E2, A2) ∈ D′ and E1 = Ω(v1). The
definition of σ̄(A1) ∼ft σ̄(A2) implies that E1 ∼ft E2 and i(E1, σ̄(A1)) = i(E2, σ̄(A2)).
Now the edge gluings in the folding of A1 onto its parent face E1 and in the folding of
A2 onto E2 must be the same. The edge e1 = (u1, x, v1) lies in A1 with u1 in ∂A1 \γ(A1)
and v1 in γ(A1), and there must be a corresponding edge e2 = (u2, x, v2) in the face
A2. Then i(A1, v1) = i(A2, v2), and so v2 lies in γ(A2). Hence E2 = Ω(v2). Finally
the correspondence in edge gluings together with i(E1, σ̄(A1)) = i(E2, σ̄(A2)) imply that
i(E1, v1) = i(E2, v2), and so v1 ∼ft v2. �

Next we use the face type classes of vertices in SC(1) to build a deterministic push-
down automaton, following the notation for a PDA in [HU79, p.110].

Definition 5.4. Let P = (Q,Σ,Γ, δ, q0, Z0, F ) be the deterministic pushdown automaton
with state set Q = {[v] | v ∈ V (SC(1))}, input alphabet Σ = X∪X−1, stack alphabet Γ =
{[v] | v ∈ V (SC(1))}, initial state q0 = [v0], initial stack symbol Z0 = [v0], final (accept)
state F = {[v0]}, and transition function the partial function δ : Q×Σ×Γ → Q×Γ∗ for
which δ([u], x, [t]) is defined only if there is an edge (u, x, v) for some vertex v in SC(1),
by

δ([u], x, [t]) :=







([v], [t]) if Ω(u) = Ω(v)
([v], [σ(Ω(v))][t]) if (Ω(u),Ω(v)) ∈ E(D′)
([v], ǫ) if (Ω(v),Ω(u)) ∈ E(D′), [t] = [σ̄(Ω(u))]

The undefined transitions for δ are viewed as going to a fail state. Note that for an
edge (u, x, v) in SC(1) satisfying v0 6= v = σ̄(Ω(u)) = ρ(Ω(u)) = φ(Ω(u)), so that the
face Ω(u) is attached at v but no edges are glued, the last case of the definition of δ
can be split into two subcases. In this situation we have Ω(u) ∼ft F1, and there is an
edge (u1, x, v0) in F1 with u1 ∼ft u. If [t] = [v] 6= [v0], then δ([u], x, [t]) := ([v], ǫ), but
if [t] = [v0], then δ([u], x, [t]) := ([v0], ǫ). The fact that δ is well-defined follows directly
from Lemma 5.3.

An instantaneous description (α, z, β) for the PDA P consists of the current state
α ∈ Q of the machine, the word z ∈ (X ∪ X−1)∗ that remains to be read, and the
current contents β ∈ Γ∗ of the stack, where the first letter of β is the “top” of the stack.
We write (α, yz, β) ⊢∗ (α′, z, β′) if, when y is read in starting from (α, yz, β), the PDA
reaches (α′, z, β′), and write ⊢ when a single letter y ∈ X ∪ X−1 is read.

Define a function β : V (SC(1)) → Γ∗ as follows. Given any vertex v in SC(1), let
v0, F1, ..., Fm = Ω(v) be the labels of the vertices along the geodesic path in the tree
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D′ from v0 to Ω(v). Then β(v) is the associated word over the stack alphabet given by
β(v) := [σ̄(Fm)] · · · [σ̄(F1)][v0].

Proposition 5.5. Let w be sparse, and let SC(1) be the Schützenberger complex of
1 for M = Inv〈X |w = 1〉. Let α ∈ Q, y, z ∈ (X ∪ X−1)∗, and β ∈ Γ∗. Then
([v0], yz, [v0]) ⊢

∗ (α, z, β) if and only if y labels an edge path in SC(1) starting at v0 and
α = [v] and β = β(v) where v is the end vertex of this path.

Proof. First we prove the forward implication, by induction on the length of y. If l(y) = 0,
then y = ǫ and ([v0], ǫz, [v0]) ⊢∗ (α, z, β) implies that α = [v0], and β = [v0] = β(v0).
The path starting at v0 labeled by y = ǫ ends at v = v0, as required.

Now, suppose that the forward implication holds for any word ỹ with 0 ≤ l(ỹ) < l(y),
and write y = y′x with x ∈ X ∪ X−1. Suppose that ([v0], yz, [v0]) ⊢

∗ (α, z, β). Then we
have ([v0], y

′xz, [v0]) ⊢
∗ (α′, xz, β′) ⊢ (α, z, β) for some α′ ∈ Q and β′ ∈ Γ∗. By induction,

the word y′ labels a path π′ in SC(1) starting at v0, and α′ = [u] and β′ = β(u) where
u is the ending vertex of the path π′.

Since (α′, xz, β′) ⊢ (α, z, β), the transition function δ is defined on the triple (α′, x, γ),
where γ is the first letter of the word β(u) ∈ Γ∗. This means that there is a representative
ũ of the ∼ft-class α′ such that there is an edge of the form e = (ũ, x, v) in SC(1) for some
vertex v, and either (i) Ω(ũ) = Ω(v), (ii) (Ω(ũ),Ω(v)) ∈ E(D′), or (iii) γ = [σ̄(Ω(ũ))] and
(Ω(v),Ω(ũ)) ∈ E(D′). In cases (i) and (ii), Lemma 5.3 shows that we may take ũ = u.
In case (iii), notice that the first letter γ of β(u) satisfies γ = [σ̄(Ω(u))] if Ω(u) 6= v0, and
γ = [v0] if Ω(u) = v0. However, if Ω(u) = v0, then u = v0, and since [ũ] = α′ = [u], then
ũ = v0, contradicting the existence of the edge (Ω(v),Ω(ũ)) in D′. Then Ω(u) 6= v0, and
so we also may take ũ = u in this case.

Then in all three cases, the path π′ followed by the edge e is a path in SC(1) labeled
by the word y starting at v0 and ending at the vertex v. Moreover, we have α = [v].

In case (i), δ(α′, x, γ) = ([v], γ), and the stack word β = β′ = β(u) is unchanged by
this transition. Since Ω(u) = Ω(v), then β = β(v).

In case (ii), δ(α′, x, γ) = ([v], [σ̄(Ω(v))]γ), and we have β = [σ̄(Ω(v))]β(u). Since
(Ω(u),Ω(v)) ∈ E(D′), we again have β = β(v).

In case (iii), δ(α′, x, γ) = ([v], ǫ). Now (Ω(v),Ω(u)) ∈ E(D′) implies that β(u) =
[σ̄(Ω(u))]β(v), and we have β = β(v) in this case as well.

This completes the proof of the forward implication.
For the reverse implication, we again induct on the length l(y). If l(y) = 0, the as

before y = ǫ labels a path from v0 to v0, and so ([v0], yz, [v0]) ⊢
∗ (α, z, β) where α = [v0]

and β = [v0] = β(v0).
Suppose again that l(y) > 0 and write y = y′x with x ∈ X ∪ X−1. By hypothesis,

y labels a path in SC(1) from v0; let v be the vertex at the end of this path, and let
u be the penultimate vertex; that is, u is at the end of the path labeled by y′. By
induction we have ([v0], yz, [v0]) ⊢∗ ([u], xz, β(u)). The definition of δ then shows that
([v0], yz, [v0]) ⊢

∗ ([v], z, β(v)). �

We can now prove Theorems 1.3 and 1.4.

Proof of Theorem 1.3
For a word y ∈ (X ∪ X−1)∗, we have y = 1 in M if and only if y labels an edge

path from v0 to v0 in SΓ(1). Proposition 5.5 shows that the latter holds if and only if
([v0], y, [v0]) ⊢∗ ([v0], ǫ, β) for some β; that is, exactly when the PDA P finishes in the
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accept state [v0]. Thus, the set of words representing the identity element in M is a
deterministic context-free language.

The word y is in the language of words related to 1 in M by Green’s relation R if and
only if y labels a path starting at v0 in SΓ(1), which holds if and only if ([v0], y, [v0]) ⊢

∗

(α, ǫ, β) for some α ∈ Q and β ∈ Γ∗. Let P′ be the PDA P with the the set of final
(accept) states changed to F = Q. Then we have y is accepted by P′ if and only if y is
in the R-equivalence class R1 of 1. Hence the set of words representing an element of R1

in M is also a deterministic context-free language. �

Proof of Theorem 1.4
Let (Q,Σ, δ, q0, F ) be the finite state automaton with state set Q = {[v] | v ∈ V (SC(1))},

input alphabet Σ = X ∪ X−1, initial state q0 = [v0], final (accept) states F = Q, and
transition function the partial function δ : Q×Σ → Q, defined by δ([u], x) := [v] if there
is an edge (u, x, v) in SC(1) and either

(i) Ω(u) = Ω(v) and either î(Ω(u), u) < î(Ω(u), v) ≤ kΩ(u) or î(Ω(u), u) > î(Ω(u), v) ≥
kΩ(u), or
(ii) (Ω(u),Ω(v)) ∈ E(D′)
Lemma 5.3 shows that this transition function is well-defined.

Let p be an arbitrary path in SC(1) starting at v0. Let v0, v1, ..., vm be the sequence of
consecutive vertices traversed by p, and let Ai := Ω(vi). Note that the path p is geodesic
if and only if dSΓ(v0, vi−1) > dSΓ(v0, vi) for all i.

If (Ai, Ai−1) ∈ E(D′), then the Geodesic Theorem 4.4 says that p is not a geodesic.
If (Ai−1, Ai) ∈ E(D′), then vi ∈ ∂Ai \ γ(Ai) = ∂Ai \ Ai−1, and the vertex vi−1 must
be one of the endpoints ρ(Ai), φ(Ai) of the gluing path of Ai onto Ai−1; let ui be the
other. The Geodesic Theorem 4.4 says that any geodesic from v0 to vi must pass through
one of the points vi−1, ui. Since dSΓ(vi−1, vi) = 1, then Lemma 4.3(1) shows that such
a geodesic must also pass through vi−1. Hence dSΓ(v0, vi) > dSΓ(v0, vi−1). Finally, if
Ai−1 = Ai, then vi−1 and vi are both vertices in ∂Ai \ γ(Ai). By Lemma 5.1, it follows
that dSΓ(v0, vi) > dSΓ(v0, vi−1) if and only if either i(Ai, vi−1) < i(Ai, vi) ≤ kAi

or
i(Ai, vi−1) > i(Ai, vi) ≥ kAi

.
In the proof of Theorem 1.3, we showed that a word y labels a path starting at v0

in SC(1) if and only if it is accepted by the PDA P′, which is the PDA in Definition
5.4 but for which all states in Q are final (accept) states. Note that the only transitions
of this PDA which utilize the stack in determining the next state are those associated
with edges from u to v with (Ω(v),Ω(u)) ∈ E(D′). Combining this with the previous
paragraph, then, the finite state automaton defined above is precisely the underlying
finite state automaton of the PDA P′ consisting only of transitions associated with edges
(u, x, v) such that d(v0, v) > d(v0, u). Thus this finite state automaton accepts precisely
the words which label geodesic paths in SC(1). �

Remark 1. The minimized form of the finite state automaton defined in the proof of
Theorem 1.4 is the automaton of cone types of SΓ(1). As an example, S. Haataja showed
that the automaton of cone types for SΓ(1) for the sparse word w = aba−1b−1cdc−1d−1

corresponding to the surface group of genus 2 has 19 cone types (unpublished manu-
script). A description of Haataja’s example may be found in Meakin’s survey article
[Me07].
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Remark 2. Descriptions of an iterative construction of the PDA in Definition 5.4 and
an implementation of the algorithm for solving the word problem is provided in S. Lind-
blad’s PhD thesis [Lin03]. The software is available from http://www.math.unl.edu/ sher-
miller2/lindblad/ .

Remark 3. In their paper [IMM01], Ivanov, Margolis and Meakin show that the word
problem for the inverse monoid M = Inv〈X |w = 1〉 corresponding to a cyclically reduced
word w is solvable if the membership problem for the submonoid of the corresponding
one-relator group G = Gp〈X|w = 1〉 generated by the prefixes of w is solvable. However
as far as we are aware, it is not known whether the prefix membership problem for this
submonoid of G is equivalent to the word problem for M in general. In particular, it
is not known whether this prefix membership problem for G is solvable if w is a sparse
word.
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[MMS05] Margolis, S., Meakin, J. and Šuniḱ, Z., Distortion functions and the membership problem for
submonoids of groups and monoids, Contemporary Mathematics 372 (2005) 109-129.

[Mun74] Munn, W. D., Free inverse semigroups, Proc. London Math. Soc. 29 (1974), no. 3, 385–404.
[Step90] Stephen, J. B., Presentations of inverse monoids, J. Pure Appl. Algebra 63 (1990), no. 1,

81–112.
[Step93] Stephen, J. B., Inverse monoids and rational subsets of related groups, Semigroup Forum 46

(1993), no. 1, 98–108.
[Stei03] Steinberg, B.,A topological approach to inverse and regular semigroups, Pacific J. Math. 208

(2003), no. 2, 367–396.

Susan Hermiller, Department of Mathematics, University of Nebraska, Lincoln NE

68588-0130, USA

E-mail address: smh@math.unl.edu

Steve Lindblad, Hewitt Associates LLC, 45 South 7th Street, Suite 2100, Minneapolis

MN 55402, USA

E-mail address: splindblad@gmail.com

John Meakin, Department of Mathematics, University of Nebraska, Lincoln NE 68588-

0130, USA

E-mail address: jmeakin@math.unl.edu


