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Abstract

A finite complete rewriting system for a group is a finite presentation which
gives a solution to the word problem and a regular language of normal forms for the
group. In this paper it is shown that the fundamental group of an orientable closed
surface of genus g has a finite complete rewriting system, using the usual generators
a1, .., ag, b1, .., bg along with generators representing their inverses. Constructions of
finite complete rewriting systems are also given for any Coxeter group G satisfying
one of the following hypotheses.
1) G has three or fewer generators.
2) G does not contain a special subgroup of the form
〈si, sj, sk | s2

i = s2

j = s2

k = (sisj)
2 = (sisk)

m = (sjsk)
n = 1〉

with m and n both finite and not both equal to two.

1. Introduction

One of the fundamental questions in the study of group theory is the solvability
of the word problem. In general the word problem for finitely presented groups
is not solvable; that is, given two words in the generators of the group, there
may be no algorithm to decide whether the words in fact represent the same
element of the group. For groups presented by a rewriting system that is finite
and complete (defined in section 2), however, the word problem is solved in a
way that is particularly easy to implement on a computer. A complete rewriting
system for a group also gives a set of normal forms for elements of the group; that
is, for each group element there is a unique word representing it which cannot be
rewritten.

In 1985 a computer scientist, M. Jantzen [9], asked whether a finitely presented
monoid or group with a solvable word problem necessarily must have a finite com-
plete rewriting system. A couple of years later a mathematician, C. C. Squier [14],
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showed that the answer to Jantzen’s question is negative. In the process, Squier
showed that a group with a finite complete rewriting system necessarily has the
homological finiteness condition FP3, and others [1], [3], [6] have extended this
to show that having a finite complete rewriting system implies that a group has
homological type FP∞.

In his paper Jantzen [9] also showed that the existence of a finite complete
rewriting system for a group may depend on the presentation that one starts with.
That is, it may be that a group has no finite complete rewriting system based on one
set of generators, while it does have such a rewriting system based on another set
of generators. Recently Squier [15] has developed a topological criterion, known
as finite derivation type, which is a necessary condition for a finitely presented
group to satisfy in order to have a finite complete presentation based on some set
of generators. A natural question to ask, then, is whether this criterion is sufficient
to imply the existence of a finite complete presentation, and, if not, then what else
is needed.

A starting point for understanding questions about finite derivation type may
be the study of Coxeter groups. J. Tits [16] has proven that these groups satisfy
a topological property that is similar, although not identical, to finite derivation
type.

Recently, Brink and Howlett [2] have shown that Coxeter groups have auto-
matic structures. Both automatic structures and finite complete rewriting systems
involve a regular language of normal forms for the groups. However, at the mo-
ment it is not clear what connection, if any, exists between automatic structures
and rewriting systems. In 1986 a computer scientist, P. Le Chenadec, published
a survey ([12]) of complete rewriting systems for groups, which included Coxeter
groups; when rewriting systems for Coxeter groups were given, however, they were
not finite in general.

In this paper constructions of finite complete presentations are given for many
families of Coxeter groups, as well as for surface groups. The second section gives
basic definitions and properties of rewriting systems. The third section contains a
discussion of rewriting systems for surface groups, including a proof of the following
proposition.

Proposition: There is a finite complete rewriting system for the fundamental
group of a closed orientable surface of genus g, using the alphabet

S = {a1, ..., ag, A1, ..., Ag, b1, ..., bg, B1, ..., Bg}

of the usual generators and their inverses.

Finally, the last section is on rewriting systems for Coxeter groups, with a proof
of the following theorem.
Theorem: Let G be a Coxeter group. Suppose G satisfies one of the following two
properties.
1) G has three or fewer generators.
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2) G does not contain a special subgroup of the form

〈si, sj, sk | s2

i = s2

j = s2

k = (sisj)
2 = (sisk)

m = (sjsk)
n = 1〉

with m and n both finite and not both equal to two.
Then G has a finite complete rewriting system.

2. Rewriting Systems

Let S be a set (called an alphabet) and let S∗ be the free monoid on S. S∗

consists of all words in the letters of S; the empty word will be represented by 1. A
rewriting system on S∗ is a subset R ⊆ S∗×S∗. An element (u, v) ∈ R, also written
u → v, is called a rule of R. The idea is that a rewriting system is an algorithm
for substituting the right hand side of a rule whenever the left hand side appears
in a word. Given a rewriting system R, write x → y for x, y ∈ S∗ if x = uv1w,
y = uv2w and (v1, v2) ∈ R. Write x

∗

→ y if x = y or x → x1 → x2 → . . . → y for
some finite chain of arrows. An element x of S∗ is irreducible with respect to R if
there is no possible rewriting (or reduction) x → y; otherwise x is called reducible.
(S, R) is a rewriting system for a monoid M if

〈S | v1 = v2 if (v1, v2) ∈ R〉

is a presentation for M . A rewriting system for a group G is a rewriting system
for G as a monoid; in particular, the alphabet must generate G as a monoid.

The rewriting system R is Noetherian if there is no infinite chain of rewritings
x → x1 → x2 → . . . for any word x ∈ S∗. R is confluent if whenever x

∗

→ y1 and
x

∗

→ y2, there is a z so that y1

∗

→ z and y2

∗

→ z. R is complete if R is Noetherian
and confluent; a complete rewriting system for a group is also known as a complete
presentation. Finally, a rewriting system is finite if both S and R are finite sets.

A group with a complete presentation has the property that there is exactly
one irreducible word representing each of the group elements. So a finite complete
rewriting system gives a solution to the word problem for the group. For examples
and more information on rewriting systems for groups, see [8] or [12].

A critical pair of a rewriting system R is a pair of overlapping rules of one of
the following forms, in which each ri is a word in S∗.
i) (r1r2, s) ∈ R and (r2r3, t) ∈ R with r2 6= 1.
ii) (r1r2r3, s), (r2, t) ∈ R.

A critical pair is resolved in R if there is a word z such that sr3

∗

→ z and r1t
∗

→ z

in the first case or s
∗

→ z and r1tr3

∗

→ z in the second. A Noetherian rewriting
system is complete if and only if every critical pair is resolved ([13],[8]).
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D. E. Knuth and P. Bendix ([11],[8]) have developed a procedure for creating
complete rewriting systems; a simplified version is as follows. To begin the Knuth-
Bendix procedure, one must start with a finite set S of generators and a finite set
E of equations sufficient to present the group or monoid involved. Put a partial
well-founded ordering on S∗, which is compatible with concatenation. That is, put
an ordering on S∗ so that for any x ∈ S∗, there is no infinite descending chain of
words x > x1 > x2 > ..., and if x > y then axb > ayb for any a, b ∈ S∗. The set
of rules R is initially defined by setting x → y for each equation x = y in E with
x > y. If there is an equation x = y in E for which neither x > y nor y > x under
the partial ordering, a different ordering must be used. Next check the rewriting
rules in R for unresolved critical pairs. If there is an unresolved critical pair of
either type, rewrite sr3 and r1t (or s and r1tr3, respectively) to words x and y that
are irreducible under the rules of R. Then add a rule x → y if x > y or y → x if
y > x to R. Continue this process until there are no more unresolved critical pairs
in R. Since each time that a rule is added to R more critical pairs may occur, this
procedure may continue forever, creating infinitely many rules. If the procedure
does stop, it will create a finite complete rewriting system.

In general the procedure for checking confluence by critical pairs can be very
time consuming. There are several computer programs which can be used to check
confluence for specific examples. In the course of the research for this paper, a
program called RRL (Rewrite Rule Laboratory) ([10]) has been used on many
examples.

If the Knuth-Bendix procedure does not produce a finite complete rewriting
system for a group, there are two changes one can make which may produce a finite
system under this procedure. One is to alter the ordering used in the procedure.
The other is to change the alphabet; Jantzen’s results [9] on the dependence of
rewriting systems on generators show that the Knuth-Bendix procedure may stop
with a finite rewriting system on one alphabet even though it does not with another
alphabet. Both of these techniques have been used in constructing the rewriting
systems in this paper.

3. Surface Groups

P. Le Chenadec and C. Squier have constructed a finite complete presentation
for the fundamental group of a closed orientable surface of genus g using generators
from the presentation

〈A1, A2, ..., A2g |A1A2 . . . A2gA
−1

1
A−1

2
. . . A−1

2g = 1〉,

along with extra letters to generate the group as a monoid. Since Jantzen [9] has
shown that the existence of a finite complete rewriting system is dependent upon
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the presentation, these groups still may not have a finite complete rewriting system
using generators from the usual presentation

〈a1, a2, ..., ag, b1, b2, ..., bg | a1b1a
−1

1
b−1

1
. . . agbga

−1

g b−1

g = 1〉.

In an effort to find such a system, we added letters to represent the inverses of the
usual generators, creating the alphabet

S = {ai, Ai, bi, Bi for 1 ≤ i ≤ g}.

In order to perform the Knuth-Bendix procedure on the rewriting system

R = {aiAi → 1, Aiai → 1, biBi → 1, Bibi → 1, (1 ≤ i ≤ g),

a1b1A1B1...agbgAgBg → 1},

a total ordering was defined on S∗ by recursive path ordering.

Definition ([5]): Let > be a partial well-founded ordering on a set S. The recursive
path ordering >rpo on S∗ is defined recursively from the ordering on S as follows.
Given s1, ..., sm, t1, ..., tn ∈ S, s1...sm >rpo t1...tn if and only if one of the following
holds.
1) s2...sm ≥rpo t1...tn.
2) s1 > t1 and s1...sm >rpo t2...tn.
3) s1 = t1 and s2...sm >rpo t2...tn.
The recursion is started from the ordering > on S and from s >rpo 1 for all s ∈ S,
where 1 is the empty word in S∗. Note that if > is a total ordering on S, then
>rpo is a total ordering on S∗.

Theorem (Dershowitz, [5]): Recursive path ordering is a well-founded partial or-
dering which is compatible with concatenation.

The Knuth-Bendix procedure on the rewriting system (S, R) above using re-
cursive path ordering with a1 > A1 > b1 > B1 > ... > ag > Ag > bg > Bg results
in a finite complete presentation.

Proposition: There is a finite complete rewriting system for the fundamental
group of a closed orientable surface of genus g, using the alphabet

S = {a1, ..., ag, A1, ..., Ag, b1, ..., bg, B1, ..., Bg}

of the usual generators and their inverses.

Proof: In order to make the notation easier, let P = a2b2A2B2 . . . agbgAgBg and let
Q = bgagBgAg . . . b2a2B2A2. The result of the Knuth-Bendix procedure described
above is the rewriting system
R′ = {aiAi → 1 Aiai → 1 biBi → 1 Bibi → 1

for all 1 ≤ i ≤ g.
a1b1 → Qb1a1 A1B1 → B1A1Q

a1B1 → B1Pa1 A1Qb1 → b1A1}
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For all rules v → w in R′, v >rpo w, so R′ is Noetherian. So all that is left is
to check confluence, by checking that all critical pairs are resolved; details of this
proof may be found in [7]. Since all of the critical pairs are resolved, (S, R′) is a
finite complete rewriting system for the surface group of genus g. 2

4. Coxeter Groups

A Coxeter group G is a group with a presentation of the form

G = 〈s1, ..., sn | s2

i = (sisj)
mij = 1〉

with 2 ≤ mij ≤ ∞ for i 6= j, where mij = ∞ denotes that there is no relation
involving si and sj. The set of letters

S = {s1, ..., sn}

generates G as a monoid, so it is natural to try to find rewriting systems for these
groups using these generators.

Complete rewriting systems for Coxeter groups were first constructed by P. Le
Chenadec [12], using the alphabet S. Le Chenadec performed the Knuth-Bendix
procedure on these groups with a length-plus-lexicographic ordering on words in
S∗. This ordering is defined using a total ordering on S. For any word w ∈ S∗

let l(w) be the length of w, that is, the number of letters in w. Then in the
length-plus-lexicographic ordering, two words v, w ∈ S∗ satisfy v > w if either
i) l(v) > l(w) or
ii) l(v) = l(w) and if v = v1...vn, w = w1...wn, with vi, wi ∈ S, then the first letters
vi, wi that are not equal satisfy vi > wi.

Le Chenadec found complete presentations in the case when none of the mij

were equal to 2; that is, when none of the generators commute. However, his
complete rewriting systems in general contain infinitely many rules, in families
parametrized by the natural numbers. This was true no matter what lexicographic
order was put on S in general. For example, the group

G = 〈a, b, c, d | a2 = b2 = c2 = d2 = (ab)4 = (ac)4 = (ad)3

= (bc)3 = (bd)4 = (cd)4 = 1〉

with any lexicographic ordering on {a, b, c, d} has a complete rewriting system with
infinitely many rules using Le Chenadec’s procedure.

For Coxeter groups we changed both the alphabet and the ordering on words to
produce finite complete presentations. Letters were added to the alphabet which
represent longest length words of finite special subgroups. A special subgroup of a
Coxeter group G is a subgroup generated by a subset of the generators {s1, ..., sn}
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of G. A special subgroup of a Coxeter group is again a Coxeter group. Define
the length of an element in a Coxeter group to be the length of a shortest possible
(or reduced) word in S∗ which represents the element. If a Coxeter group is finite,
then there is a longest element of the group. For a discussion of these and other
properties of Coxeter groups, see [4]. With this new alphabet, and a weight-plus-
lexicographic ordering (defined below), we were able to construct finite complete
rewriting systems for many Coxeter groups.

Theorem: Let G be a Coxeter group. Suppose G satisfies one of the following two
properties.
1) G has three or fewer generators.
2) G does not contain a special subgroup of the form

〈si, sj, sk | s2

i = s2

j = s2

k = (sisj)
2 = (sisk)

m = (sjsk)
n = 1〉

with m and n both finite and not both equal to two.
Then G has a finite complete rewriting system.

Proof:

The only groups in 1) not also covered in 2) are the triangle groups listed in
2). These are broken up into four cases.

Notation: [ab]k is the alternating product of k letters abab . . .; [ab]1 = a,
[ab]0 = 1. Let G =< a, b, c | a2 = b2 = c2 = (ab)2 = (ac)m = (bc)n = 1 >.

Case I. m = 2.
Alphabet: a, b, c

Rules: a2 → 1 b2 → 1 c2 → 1
ab → ba ac → ca [bc]n → [cb]n

Case II. m ≥ 4, n ≥ 3, m even.
Alphabet: a, b, c

Rules: a2 → 1 b2 → 1 c2 → 1 ab → ba

ab → ba [ac]m → [ca]m [bc]n → [cb]n
a[cb]n → ba[cb]n−1 [ac]m−2ba[cb]n−1 → [ca]m−1ba[cb]n−2

Case III. m ≥ 3, n ≥ 5, m, n both odd.
Alphabet: a, b, c

Rules: a2 → 1 b2 → 1 c2 → 1 ab → ba

[ac]m → [ca]m [bc]n → [cb]n [ac]m−1ba → [ca]mb

a[cb]n → ba[cb]n−1 [ac]m−1b[ca]m → [ca]mb[ca]m−1

[ac]m−1b[ca]m−2ba[cb]n−1 → [ca]mb[ca]m−2ba[cb]n−2

Case IV. m = n = 3.
Alphabet: a, b, c

Rules: a2 → 1 b2 → 1 c2 → 1 ab → ba

aca → cac bcb → cbc acba → cacb acbc → bacb

All other cases may be obtained from these by swapping a and b, and hence m

and n.
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In all four cases, put a total ordering on the words in the alphabet S = {a, b, c}
using a length-plus-lexicographic ordering with the ordering a > b > c on S. With
these orderings, all of the rules v → w in cases I-IV satisfy v > w; since for any
word v the number of words w with v > w is finite, this ordering is well-founded,
and the rewriting systems are Noetherian. In order to show that these systems are
confluent, then, it suffices to check that every critical pair is resolved; the details
of this may be found in [7]. This concludes the proof of part 1) of the theorem.

The proof of part 2) will be done all together rather than in separate cases.

Alphabet: In this case, we will use words in the usual generators of G for
our new alphabet S ′. An expression surrounded by parentheses () or braces {}
will represent a letter in the new alphabet. For each generator si of G, associate a
letter (i) in the new alphabet. For each longest length element [sisj]mij

= [sjsi]mij

(using the notation of part 1)) of the special subgroup generated by si and sj when
2 < mij < ∞, associate a letter {ij}; that is, {ij} and {ji} will represent the same
letter of S ′. Finally, for each product sisjsk... of two or more generators all of
which commute with one another, associate a letter (ijk...). In other words, if mij

= 2, then the expressions (ij) and (ji) will represent the same letter of S ′, and
similarly for letters (ijk...) representing longer words in the usual generators.

Notation: As in the notation in part 1) above, [ab]k is the alternating prod-
uct of k letters (a)(b)(a)(b) . . ., and k[ab] is the alternating product of k letters
. . . (a)(b)(a)(b).

The following conventions have been used in writing down the set R′ of rules in
this part. First, a rule occurs only when the letters exist; that is, if a symbol (ij...)
occurs in a rule, si and sj must commute, and if a symbol {ij} appears, the order
mij of the product sisj in G must satisfy 2 < mij < ∞. On the left hand side of a
rule, (ij...) or (i...) will denote any letter of the new alphabet S ′ which is associated
to a word of a finite special subgroup containing si, and possibly containing other
generators sj, ... which commute with si. On the right hand side of a rule, (i...)
will denote either an empty expression () or again a letter of S ′ associated to a
finite commutative subgroup of G; an empty expression () represents the trivial
word. Finally, in each rule, the numbers i, j, and k are assumed to be distinct,
with one exception: in rule G), j and k may be the same.

Rules:

A) (i...)2 → 1
B) {ij}2 → 1
C) (i...)(jk...) → (i...j)(k...)
D) mij−1[ij](ik...) → {ij}(k...)
E) (i...){jk} → (i...j)[kj]mjk−1

F) mij−1[ij]{ik} → {ij}[ki]mik−1

G) (ij...)(ik...) → (j...)(k...)
H) {ij}(ik...) → mij−1[ij](k...)
I) (ij...){ik} → (j...)[ki]mik−1

J) {ij}{ik} → mij−1[ij][ki]mik−1
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Example:

Let G be the Coxeter group with presentation

G = 〈s1, s2, s3, s4 | s2

1
= s2

2
= s2

3
= s2

4
= (s1s2)

2 = (s1s3)
4 = (s3s4)

3〉.

Then the rewriting system for G will have alphabet

S ′ = {(1), (2), (3), (4), (12), {13}, {34}}.

The rules are given by
R′ = { A) (1)2 → 1 (2)2 → 1 (3)2 → 1 (4)2 → 1 (12)2 → 1

B) {13}2 → 1 {34}2 → 1
C) (1)(2) → (12) (2)(1) → (12)
D) (1)(3)(1)(3) → {13} (3)(1)(3)(1) → {13}

(3)(1)(3)(12) → {13}(2)
(3)(4)(3) → {34} (4)(3)(4) → {34}

E) (2){13} → (12)(3)(1)(3)
F ) (1)(3)(1){34} → {13}(4)(3) (3)(4){13} → {34}(1)(3)(1)
G) (1)(12) → (2) (2)(12) → (1) (12)(1) → (2) (12)(2) → (1)
H) {13}(1) → (3)(1)(3) {13}(3) → (1)(3)(1)

{13}(12) → (3)(1)(3)(2)
{34}(3) → (3)(4) {34}(4) → (4)(3)

I) (1){13} → (3)(1)(3) (3){13} → (1)(3)(1)
(12){13} → (2)(3)(1)(3)
(3){34} → (4)(3) (4){34} → (3)(4)

J) {13}{34} → (1)(3)(1)(4)(3) {34}{13} → (3)(4)(1)(3)(1) }

Let M be the monoid presented by the rewriting system (S ′, R′). Rules C)
and D) show that the generators (ij...) and {ij} can be expressed as products
of letters of the form (i). Considering each letter (i) as the usual generator si

of G = 〈s1, ..., sn | s2

i = (sisj)
mij = 1〉, rules A), B), C), and D) give all of the

relations in the usual (monoid) presentation of G. In the same way, all of the
relations in M are implied by those in G. So this rewriting system gives a monoid
presentation of G.

Put a weight-plus-lexicographic total ordering on the words of the alphabet
S ′ as follows. Define a system of weights by wt((i)) = 1, wt({ij}) = mij, and
wt((ijk...)) = the number of generators in the expression. So for s ∈ S ′, wt(s) =
the length of s in the usual generators. Then for a word w ∈ S ′∗, let wt(w) be the
sum of the weights of the letters in w. Put a partial ordering on the generators by
defining t > u for two letters t and u of S ′ if wt(t) < wt(u); so this lexicographic
ordering and the weight ordering on S ′ are precisely opposite. Then define the
weight-plus-lexicographic ordering on S ′∗ by v > w for two words v and w if
wt(v) > wt(w) or if wt(v) = wt(w) and v is lexicographically greater than w.
Although this ordering does allow v > w when v has a shorter word length on S ′

than w, the weight, or word length considered in S, of v may not be less that that
of w. As with the other rewriting systems dealt with so far, all rules v → w in this
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rewriting system satisfy v > w. Since for every word v there are only finitely many
words w with v > w, the ordering is well-founded, and the system is Noetherian.

As before, it suffices to check resolution of critical pairs in order to show this
is confluent. It is important to note that the left hand side of a rule may be
completely contained within the left hand side of another rule for this rewriting
system; such overlapping critical pairs must be checked for confluence with the
rest. The resolutions of these critical pairs may be found in [7]. 2

Notes:

i) The alphabets used in cases I-IV of the proof of part 1) are not the same as
those in the proof of part 2) of this theorem. In all cases except case III we have
found a rewriting system using the same alphabet as in part 2), but some of the
rules have arrows in the opposite direction.
ii) In part 2) of this theorem, unresolved critical pairs may occur when the hy-
pothesis on special subgroups which G may contain is omitted. If G contains a
subgroup

〈si, sj, sk | s2

i = s2

j = s2

k = (sisj)
2 = (sisk)

2 = (sjsk)
n = 1〉,

with 2<n<∞, there are two unresolved critical pairs. The first results from appli-
cations of rule E):

(i){jk} → (ij)[kj]n−1,

(i){jk} → (ik)[jk]n−1

where the portion of each word that is underlined is the portion being rewritten.
This is a critical pair of type i) with r1 = r3 = 1 and r2 = (i){jk}. The second
involves applications of rules D) and C), respectively:

n−2[jk](j)(ik) → {jk}(i),

n−2[jk](j)(ik) → n−2[jk](ji)(k).

This is also a critical pair of type i), with r1 = n−2[jk], r2 = (j)(ik), and r3 = 1.
If G contains a subgroup

〈si, sj, sk | s2

i = s2

j = s2

k = (sisj)
2 = (sisk)

m = (sjsk)
n = 1〉,

with 2<m, n<∞, there is an unresolved critical pair given by applications of rules
F) and E), respectively:

m−2[ik](i){jk} → {ik}[jk]n−1,

m−2[ik](i){jk} → m−2[ik](ij)[kj]n−1.

This is a critical pair of type i) with r1 = m−2[ik], r2 = (i){jk}, and r3 = 1.
These critical pairs are not resolved without at least the addition of more rules,
and, perhaps, more letters.

10



Acknowledgement

The author would like to thank Professor Kenneth S. Brown for his advice and
encouragement.

References

[1] D. J. Anick, On the homology of associative algebras, Trans. Amer. Math.
Soc. 296 (1986) 641-659.

[2] B. Brink and R. Howlett, A finiteness property of Coxeter groups, The
University of Sydney, 1992.

[3] K. S. Brown, The geometry of rewriting systems: A proof of the Anick-
Groves-Squier theorem, in: G. Baumslag and C. F. Miller, eds., Algo-
rithms and Classification in Combinatorial Group Theory, MSRI Publica-
tions (Springer, New York, 1991) 137-163.

[4] K. S. Brown, Buildings, (Springer, New York, 1989).

[5] N. Dershowitz, Orderings for term-rewriting systems, Theoret. Comput.
Sci. 17 (1982) 279-301.

[6] J. R. J. Groves, Rewriting systems and homology of groups, in: L. G. Kovacs,
ed., Groups - Canberra 1989, Lecture Notes in Mathematics 1456, (Springer,
New York, 1990) 114-141.

[7] S. M. Hermiller, Rewriting systems for Coxeter groups, Ph.D. Thesis, Cornell
University, 1992.

[8] G. Huet, Confluent reductions: Abstract properties and applications to term
rewriting systems, J. Assoc. Comput. Mach. 27 (1980) 797-821.

[9] M. Jantzen, A note on a special one-rule semi-Thue system, Inf. Proc.
Letters 21 (1985) 135-140.

[10] D. Kapur and H. Zhang, An overview of Rewrite Rule Laboratory (RRL), in:
N. Dershowitz, ed., Rewriting Techniques and Applications, Lecture Notes
in Computer Science 355, (Springer, Berlin, 1989) 559-563.

[11] D. E. Knuth and P. Bendix, Simple word problems in universal algebras,
in: J. Leech, ed., Computational Problems in Abstract Algebra, (Pergamon
Press, New York, 1970) 263-297.

[12] P. Le Chenadec, Canonical Forms in Finitely Presented Algebras, (Pitman,
London; Wiley, New York, 1986).

[13] M. H. A. Newman, On theories with a combinatorial definition of ‘equiva-
lence’, Ann. of Math. 43 (1943) 223-243.

11



[14] C. C. Squier, Word problems and a homological finiteness condition for
monoids, J. Pure Appl. Algebra 49 (1987) 201-217.

[15] C. C. Squier, A finiteness condition for rewriting systems, SUNY Bingham-
ton, 1987.

[16] J. Tits, A local approach to buildings, in: C. Davis, B. Grunbaum, and F. A.
Sherk, eds., The Geometric Vein: The Coxeter Festschrift, (Springer, New
York, 1981) 519-547.

12


