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Abstract. In this paper we introduce the geodesic conjugacy language and ge-
odesic conjugacy growth series for a finitely generated group. We study the ef-
fects of various group constructions on rationality of both the geodesic conjugacy
growth series and spherical conjugacy growth series, as well as on regularity of the
geodesic conjugacy language and spherical conjugacy language. In particular, we
show that regularity of the geodesic conjugacy language is preserved by the graph
product construction, and rationality of the geodesic conjugacy growth series is
preserved by both direct and free products.
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1. Introduction

For a finitely generated group, several growth functions and series associated with
elements or conjugacy classes of the group have been studied. In this paper, we
study a conjugacy growth series first examined by Rivin ([19], [20]), and introduce
a new growth series arising from the conjugacy classes, which we show admits much
stronger closure properties. We also study the regularity properties of languages
associated to the set of conjugacy classes.

Let G = 〈X〉 be a group generated by a finite inverse-closed generating set X.
For each word w ∈ X∗, let l(w) = lX(w) denote the length of this word over
X. Any language L ⊆ X∗ over the finite alphabet X gives rise to two growth
functions : N∪{0} → N∪{0}, namely the “usual” or cumulative growth function βL

defined by βL(n) := |{w ∈ L | l(w) ≤ n}| and the strict growth function φL(n) :=
|{w ∈ L | l(w) = n}|. The generating series associated to these functions are the
“usual” or cumulative growth series bL(z) :=

∑∞
i=0 βL(i)zi and the strict growth

series fL(z) :=
∑∞

i=0 φL(i)zi. These growth functions and series are closely related,
in that φL(n) = βL(n) − βL(n − 1) for all n ≥ 1, and φL(0) = βL(0), and so
these two series satisfy the identity fL(z) = (1 − z)bL(z). It is well known (see, for
example, [1]) that if the language L is a regular language (i.e., the language of a
finite state automaton), then both of the series bL and fL are rational functions. In
this paper, we will focus on strict growth series associated to two languages derived
from the pair (G,X).
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Let ∼c denote the equivalence relation on G given by conjugacy, with set G/ ∼c of
equivalence classes, and let [g]c denote the conjugacy class of g ∈ G. Let π : X∗ → G
be the natural projection. Fix a total ordering < of the set X, and let <sl be the
induced shortlex ordering of X∗. For each conjugacy class c ∈ G/ ∼c, there is
a shortlex conjugacy normal form zc for c that is the shortlex least word over X
representing an element of G lying in c. That is, [π(zc)]c = c, and for all w ∈ X∗

with w 6= zc and [π(w)]c = c we have zc <sl w. We call the set

Σ̃ = Σ̃(G,X) := {zc | c ∈ G/ ∼c}

the spherical conjugacy language for G over X. Note that if L is any other language
of length-minimal normal forms for the conjugacy classes of G over the generating
set X, then the growth functions (and hence also the corresponding series) for the
spherical conjugacy language and L must coincide; that is, for all natural numbers
n we have φeΣ

(n) = φL(n). The strict growth series

σ̃ = σ̃(G,X) := feΣ(G,X)

is the spherical conjugacy growth series for G over X. In Section 2 we study this
language and series.

The corresponding cumulative growth function βeΣ(G,X)
, known as the “conjugacy

growth function”, has been studied by several authors; see the surveys by Guba
and Sapir [10] and Breuillard and de Cornulier [2] for further information on these
functions. For the class of non-elementary word hyperbolic groups, Coornaert and
Knieper [6] have shown bounds on the growth of the conjugacy growth function in
terms of the exponential cumulative growth rate of the spherical language

Σ = Σ(G,X) := {yg | g ∈ G}

of shortlex normal forms for the elements of G; here for each g ∈ G the word
yg ∈ X∗ satisfies π(yg) = g and whenever w ∈ X∗ with w 6= yg and π(w) = g then
yg <sl w. Analogous to the case of the conjugacy language above, if L is any other
language of geodesic normal forms for the elements of G over the generating set
X, then the growth functions for the spherical language and L must coincide; that
is, for all natural numbers n we have φΣ(n) = φL(n) = the number of elements of
G in the sphere of radius n with respect to the word metric on G induced by X.
The (usual) growth function of the group G with respect to X, i.e. the cumulative
growth function βΣ(G,X), is very well known and studied; see the texts by de la
Harpe [7, Chapter VI] and Mann [17] for surveys of results and open problems for
the cumulative and strict growth functions associated to this spherical language.

Chiswell [3, Corollary 1] has shown that rationality of the spherical growth se-
ries (i.e. the strict growth series of the spherical language Σ) is preserved by the
construction of graph products of groups, and in their proof of [11, Corollary 5.1],
Hermiller and Meier show that regularity of the spherical language is preserved by
this construction as well. (The graph product construction includes both direct and
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free products; see Section 3 for the definition.) In Proposition 2.1 we note that regu-
larity of the spherical conjugacy language and rationality of the spherical conjugacy
growth series are preserved by direct products. By contrast, in [20, Theorem 14.6],
Rivin has shown that although for the infinite cyclic group Z = 〈a〉 the spherical
conjugacy language is a regular language and σ̃(Z, {a±1}) = 1+z

1−z is rational, the

spherical conjugacy growth series σ̃(F2, {a
±1, b±1}) for the free group on two gen-

erators a, b is not a rational function. Combining this with the result above on
rationality of the growth of regular languages, this shows that the spherical con-

jugacy language Σ̃(F2, {a
±1, b±1}) is not regular. In Section 2, we strengthen this

result to the broader class of context-free languages.

Proposition 2.2. Let F = F (a, b) be a free group on generators a, b. Then the

spherical conjugacy language Σ̃(F, {a±1, b±1}) is not context-free.

Consequently neither regularity of the spherical conjugacy language nor ratio-
nality of the spherical conjugacy growth series are preserved by the free product
construction. We also give further examples for which these properties of spherical
conjugacy languages are not preserved by free products, in the following.

Theorem 2.4. For finite nontrivial groups A and B with generating sets XA =
A \ 1A and XB = B \ 1B, the free product group A ∗ B with generating set X :=
XA ∪ XB has rational spherical conjugacy growth series σ̃(A ∗ B,X) if and only if
A = B = Z/2Z. Moreover, given any ordering of X satisfying a < b for all a ∈ XA

and b ∈ XB, for the induced shortlex ordering the associated spherical conjugacy

language Σ̃(A ∗ B,X) is regular if and only if A = B = Z/2Z.

The property of admitting a rational spherical conjugacy growth series appears
to be extremely restrictive; indeed, Rivin [20, Conjecture 13.1] has conjectured that
the only word hyperbolic groups that have a rational spherical conjugacy growth
series are the virtually cyclic groups. Theorem 2.4 gives further evidence for this
conjecture.

In [12], Holt, Rees, and Röver also connect languages and conjugation in groups,
but from a different perspective. They consider the conjugacy problem set associated
a group G with finite generating set X, i.e. the set of ordered pairs (u, v) such that
u and v are conjugate in G. They show that various notions of context-freeness of
this language can be used to characterize the classes of virtually cyclic and virtually
free groups.

It is also natural to consider all of the geodesics instead of a normal form set
when studying languages or growth series. For each element g of G, let |g|(= |g|X)
denote the length of a shortest representative word for g over X. A geodesic, then,
is a word w ∈ X∗ with l(w) = |π(w)|. The length up to conjugacy of g, denoted by
|g|c, is defined to be

|g|c := min{|h| | h ∈ [g]c} ,
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and the length of the conjugacy class is denoted by |[g]c| := |g|c. An element w ∈ X∗

satisfying l(w) = |[π(w)]c| will be called a geodesic of the pair (G,X) with respect to
conjugacy, or a conjugacy geodesic word. We define a new series for the pair (G,X)
built from these words. The set

Γ̃ = Γ̃(G,X) := {w ∈ X∗ | l(w) = |π(w)|c}

of conjugacy geodesics is the geodesic conjugacy language, and the strict growth
series

γ̃ = γ̃(G,X) := feΓ(G,X)

is the geodesic conjugacy growth series, for G over X. In Section 3 we study this
language and series.

This geodesic conjugacy language is the canonical analog in the case of conjugacy
classes to the set

Γ = Γ(G,X) := {w ∈ X∗ | l(w) = |π(w)|}

of geodesic words, which we will call the geodesic language of the group G over X.
The corresponding strict growth series will be called the geodesic growth series, and
denoted

γ = γ(G,X) := fΓ(G,X).

See the paper by Grigorchuk and Nagnibeda [9, Section 6] for a survey of results
on this series. For word hyperbolic groups, Cannon has shown that the geodesic
language for every finite generating set is regular [8, Chapter 3]; that is, the group
has finitely many “cone types”.

Loeffler, Meier, and Worthington [15] have shown that regularity of Γ is preserved
by the graph product construction and rationality of γ is preserved by direct and free
products. In Section 3 in Propositions 3.3 and 3.5 we give several characterizations of
the geodesic words and conjugacy geodesic words for a graph product group in terms
of the geodesic languages and geodesic conjugacy languages for the vertex (factor)
groups. We use these to show that, unlike the spherical conjugacy case above,

regularity of the pair of languages Γ̃, Γ is preserved when taking graph products.

Theorem 3.1. If G is a graph product of groups Gi with 1 ≤ i ≤ n, and each Gi

has a finite inverse-closed generating set Xi such that both Γ(Gi,Xi) and Γ̃(Gi,Xi)
are regular, then both the geodesic language Γ(G,∪n

i=1Xi) and the geodesic conjugacy

language Γ̃(G,∪n
i=1Xi) are also regular.

A corollary of Theorem 3.1 is that for every right-angled Artin group, right-angled
Coxeter group, and graph product of finite groups, with respect to the “standard”
generating set (that is, a union of the generating sets of the vertex groups), the
geodesic conjugacy language is regular and hence the geodesic conjugacy growth
series is rational.

Rationality of geodesic conjugacy growth series is also preserved by both free and
direct products.
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Theorem 3.8. Let G and H be groups with finite inverse-closed generating sets A
and B, respectively. Let γ̃G(z) := γ̃(G,A)(z) =

∑∞
i=0 riz

i and γ̃H(z) := γ̃(H,B)(z) =∑∞
i=0 siz

i be the geodesic conjugacy growth series, and let γG := γ(G,A) and γH :=
γ(H,B) be the geodesic growth series for these pairs.

(i) The geodesic conjugacy growth series γ̃× of the direct product G×H = 〈G,H |
[G,H]〉 of groups G and H with respect to the generating set A ∪ B is given by

γ̃× =
∑∞

i=0 δiz
i where δi :=

∑i
j=0

(i
j

)
rjsi−j.

(ii) The geodesic conjugacy growth series γ̃∗ of the free product G∗H of the groups
G and H with respect to the generating set A ∪ B is given by

γ̃∗ − 1 = (γ̃G − 1) + (γ̃H − 1) − z
d

dz
ln [1 − (γG − 1)(γH − 1)] .

In our last result of Section 3, we show in Proposition 3.11 that geodesic conjugacy
languages and series also behave nicely for a free product with amalgamation of finite
groups

Proposition 3.11. If G and H are finite groups with a common subgroup K,
then the free product G ∗K H of G and H amalgamated over K, with respect to
the generating set X := G ∪ H ∪ K − {1}, has regular geodesic conjugacy language

Γ̃(G ∗K H,X) and rational geodesic conjugacy growth series γ̃(G ∗K H,X).

In Section 4 we conclude with a few open questions.

2. spherical conjugacy series and languages

In this section we collect information about the closure properties of the class of
pairs (G,X) for which the spherical conjugacy language is regular, or for which the
spherical conjugacy growth series is rational.

Proposition 2.1. Let G and H be groups with finite inverse-closed generating sets
X and Y , respectively.

(i): Let < be a total ordering on X ∪ Y satisfying x < y for all x ∈ X and
y ∈ Y ; we take all shortlex orderings to be defined from < or its restriction

to X or Y . If Σ̃(G,X) and Σ̃(H,Y ) are regular, then Σ̃(G × H,X ∪ Y ) is
regular.

(ii): If σ̃(G,X) and σ̃(H,Y ) are rational, then σ̃(G × H,X ∪ Y ) is rational.

Proof. The spherical conjugacy language for the direct product group G×H, viewed
as the group generated by G and H (and hence by X ∪ Y ) with relations [g, h] = 1

for all g ∈ G and h ∈ H, is given by Σ̃(G × H,X ∪ Y ) = Σ̃(G,X)Σ̃(H,Y ). Thus
(i) follows from the fact that regular languages are closed under concatenation. For
part (ii), the spherical conjugacy growth series are related by the formula σ̃(G ×
H,X ∪ Y ) = σ̃(G,X)σ̃(H,Y ). �
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Rivin [20, Theorem 14.6] has shown that the spherical conjugacy growth series of
the free group on k generators, with respect to a free basis, is not a rational function.
Combining this with the fact that growth series of regular languages are rational,
then the spherical conjugacy language for any free group, again with respect to a
free basis, cannot be regular. In Proposition 2.2 we give a proof that this language
is not even context-free for the free group on two generators, which immediately
extends to the case of a group with a free factor in Corollary 2.3. (See [13] for an
exposition of the theory of context-free languages.)

Proposition 2.2. Let F = F (a, b) be a free group on generators a, b. Then the

spherical conjugacy language Σ̃(F, {a±1, b±1}) is not context-free.

Proof. Suppose that Σ̃ = Σ̃(F, {a±1, b±1}) is context-free and consider the inter-

section I = Σ̃ ∩ L, where L = a+b+a+b+. Since L is a regular language, and the
intersection of a context-free language with a regular language is context-free (see
[13, p. 135, Theorem 6.5]), I is context-free. Suppose that a < b. Then all words in
I have the form

(1) apblaqbj with p ≥ q,

and I can be written as the union of the two disjoint sets

I1 = {apblapbj | p, l, j > 0, l ≤ j}
I2 = {apblaqbj | p, l, j > 0, p > q > 0}

Now let k be the constant given by the pumping lemma (see [13, Lemma 6.1,
p. 125] for a statement and details) for context-free languages applied to the set I,
and consider the word W = anbnanbn, where n > k. One can see W as composed
of four blocks, the first block being an, the second being bn etc. Then by the
pumping lemma W can be written as W = uvwxy, where l(vx) ≥ 1, l(vwx) ≤ k,
and uviwxiy ∈ I for all i ≥ 0. Since l(vwx) ≤ k < n, vwx cannot be part of more
than two consecutive blocks.

In a first case, suppose that vwx is just part of one block, i.e. vwx is a power of
a, or a power of b. If vwx is in the first block, for i = 0 one obtains a word that does
not satisfy (1). If it is in the second block then for i > 2 one gets a word uviwxiy
of the form apblapbj, but l > j, so this word doesn’t belong to either I1 or I2. If
vwx is in the third block, for i > 2 uviwxiy does not have the form (1). If vwx is in
the fourth block, for i = 0 uwy has the form apblapbj , j < l, and so uwy does not
belong to I.

In a second case, suppose vwx contains both a’s and b’s. If one of v or x contains
both a and b, then for i > 2 the word uviwxiy contains many blocks alternating
between powers of a and b, and so does not lie in a+b+a+b+. So v has to be a power
of one letter only, and x a power of the other letter. If v is in first block and x in the
second block, take i = 0, and one gets a contradiction to (1). If v is in the second
block and x in the third, then for i > 2, uviwxiy has the form apblaqbj with p < q,
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which gives a contradiction to (1) . Finally, if v is in the third and x in fourth block,
for i > 2 the word uviwxiy does not satisfy (1).

Hence none of these cases hold, giving the required contradiction. �

In fact, whenever a group G with a finite inverse-closed generating set contains a
free subgroup F such that there is a free basis {a1, ..., an} of F lying in X and such

that all elements of Σ̃(F, {a±1
i }) are also shortlex conjugacy normal forms for the

pair (G,X), the proof above can be applied. As a result, we obtain the following.

Corollary 2.3. Let F be a free group with free basis Z and let H be any group with
finite inverse-closed generating set Y .

(i): For the direct product group F ×H the spherical conjugacy language Σ̃(F ×
H,Z ∪ Z−1 ∪ Y ) is not a context-free language.

(ii): For the free product group F ∗ H the spherical conjugacy language Σ̃(F ∗
H,Z ∪ Z−1 ∪ Y ) is not a context-free language.

Since the spherical conjugacy growth series for the free product of two infinite
cyclic groups is not rational, it is natural to consider next the free product of two
finite groups.

Theorem 2.4. For finite nontrivial groups A and B with generating sets XA =
A \ 1A and XB = B \ 1B, the free product group A ∗ B with generating set X :=
XA ∪ XB has rational spherical conjugacy growth series σ̃(A ∗ B,X) if and only if
A = B = Z/2Z. Moreover, given any ordering of X satisfying a < b for all a ∈ XA

and b ∈ XB, for the induced shortlex ordering the associated spherical conjugacy

language Σ̃(A ∗ B,X) is regular if and only if A = B = Z/2Z.

Proof. Let G := A ∗ B and let us assume that all letters in XA come before the
letters in XB in a fixed ordering of X. Notice that the set Γ(G,X) of geodesics
in G are simply the alternating words in XA and XB. To simplify notation, write

Σ̃G := Σ̃(G,X), Σ̃A := Σ̃(A,XA), and Σ̃B := Σ̃(B,XB). Then Σ̃A ⊆ XA ∪ {λ} and

Σ̃B ⊆ XB ∪ {λ}, where λ denotes the empty word. Since any word alternating over
XA and XB can be cyclically conjugated to a word of the same length starting with
a letter in XA, we have

Σ̃G = Σ̃A ∪ Σ̃B ∪ Σ̃AB,

where Σ̃AB is defined to be the set of words in Σ̃G that alternate between XA and
XB , starting with a letter from XA and ending with a letter from XB .

Suppose first that A = B = Z/2Z. Then XA = {a} and XB = {b} are singleton

sets, and Σ̃G = {λ, a, b} ∪ {(ab)r | r ∈ N}. Hence Σ̃G is regular, and σ̃G is rational.
For the remainder of this proof we assume that at least one of the groups A or

B has order at least 3. In order to analyze the spherical conjugacy growth series of
G, we follow the ideas in Theorems 14.2, 14.4 and 14.6 in [20]. We refer the reader
to [5] for details of complex analytic techniques used here.
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Notice that all words in Σ̃AB have even length; we denote those words in Σ̃AB of

length 2r by Σ̃AB,2r. Moreover, if we denote the subset of Γ(G,X) of alternating
words of length 2r beginning with a letter in XA and ending with a letter in XB

by ΓAB,2r, and similarly for ΓBA,2r, then |ΓAB,2r ∪ ΓBA,2r| = 2|XA|
r|XB |

r and

the set Σ̃AB,2r is in bijective correspondence with the cyclic conjugacy classes of

ΓAB,2r ∪ ΓBA,2r. That is, if we let f(2r) = |Σ̃AB,2r|, then f(2r) is the number of
orbits of the group Z/2rZ acting by cyclic conjugation on the set ΓAB,2r ∪ ΓBA,2r.
We can compute f(2r) by using Burnside’s Lemma, which gives

f(2r) =
1

2r

∑

g∈Z/2rZ

|Fix(g)|

=
1

2r

∑

2|d|2r

∑

g∈Z/2rZ,gcd(g,2r)=d

|Fix(g)|

where the second equality uses the fact that an odd element of Z/2rZ cannot permute
an even length alternating word to itself. Now for any g ∈ Z/2rZ with 2|d =
gcd(g, 2r) and any alternating word w ∈ Fix(g), we have w = v2r/d for an alternating

word v ∈ ΓAB,d ∪ΓBA,d. There are 2|XA|
d/2|XB |

d/2 such words. Also using the fact

that φ(2r
d ) = |{g ≤ 2r | gcd(g, 2r) = d}|, where φ is the Euler totient function, yields

f(2r) =
1

r

∑

2|d|2r

φ(
2r

d
)|XA|

d/2|XB |
d/2

=
1

r

∑

e|r

φ(
r

e
)|XA|

e|XB |
e

=
1

r

∑

e|r

φ(e)|XA|
r/e|XB |

r/e .

Let σ̃G := σ̃(G,X). Now we have

σ̃G(z) = 1 + |Σ̃A ∪ Σ̃B \ {λ}|z +
∞∑

r=1

|Σ̃AB,2r|z
2r

= 1 + |Σ̃A ∪ Σ̃B \ {λ}|z +

∞∑

r=1

1

r

∑

e|r

φ(e)(|XA||XB |)
r/ez2r .

To simplify notation, let α := |XA||XB | and β := |Σ̃A ∪ Σ̃B \ {λ}|. Formally taking
the derivative of this power series and multiplying by z gives

zσ̃′
G(z) = βz + 2

∞∑

r=1

∑

e|r

φ(e)αr/e(z2)r .
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Rearrange the terms of this formal power series (e.g. as in [20, Theorem 14.4] with
cn = φ(n) and bn = αn) to obtain

zσ̃′
G(z) = βz + 2

∞∑

d=1

φ(d)

∞∑

n=1

αn(z2d)n .

Now α = |XA||XB | and at least one of the sets XA,XB contains more than one
element. Hence α > 1. For any real number r > 0 and any point p ∈ C, let Dr(p)
denote the open disk of the complex plane defined by Dr(p) := {z | |p − z| < r}.

Since
∑∞

n=1 αn(z2d)n = αz2d

1−αz2d for all z in the disk D1/α(0), we have zσ̃′
G(z) = h(z)

in this disk, where

h(z) := βz + 2
∞∑

d=1

φ(d)
αz2d

1 − αz2d
.

For any 0 < ǫ < 1 there are only finitely many even roots of 1
α in the closed disk

D1−ǫ(0); denote these roots by z1, ..., zk . (In particular, all 2d-th roots of 1
α in this

closed disk must satisfy d ≤ − ln(α)/2 ln(1 − ǫ).) Let

ǫ′ :=
ǫ

3
min [{1 − ǫ − |zi| | 1 ≤ i ≤ k} ∪ {d(zi, zj) | i 6= j}] ,

and let R be the region of the complex plane defined by R := D1−ǫ(0) \∪
k
i=1Dǫ′(zi).

Then for all z ∈ R the value of |1−αz2d| must be strictly greater than 0. Since R is
compact, then there is a δ > 0 such that for all z in the region R, we have |1−αz2d| ≥

δ. Now |φ(d) αz2d

1−αz2d | ≤ dα
δ (1 − ǫ)2d. Since the series

∑∞
d=1 dα

δ (1 − ǫ)2d converges

to a finite number, the Weierstrass M-test [5, II.6.2] says that the series h(z) is
uniformly convergent on this region R. Since each partial sum in the expression
for h is continuous on R, then h is also continuous on this region [5, II.6.1], and
since each partial sum is analytic, the function h is also analytic on R [5, VII.2.1].
Allowing ǫ to shrink to 0, this shows that h is analytic on the disk D1(0) outside of
the infinite set of points that are 2d-th roots of 1

α . Moreover, whenever y is a 2d0-th

root of 1
α , a similar argument shows that the sum

∑∞
d=1,d6=d0

φ(d) αy2d

1−αy2d is analytic,

and so the function h has a pole at the point y. That is, h(z) is analytic on the unit
disk except for infinitely many poles.

Now assume that the power series zσ̃′
G(z) is a rational function p(z). Then p must

be analytic in the unit disk outside of finitely many poles. Let R′ be the unit disk
with all of the poles of both h and p removed. Then we have p and h are analytic
on R′, and p = h in an open disk D1/α(0); thus p = h on R′ [5, IV.3.8]. This shows
that infinitely many of the poles of h must be removable singularities, which is a
contradiction.

Thus zσ̃′
G(z) cannot be a rational function. Therefore the function σ̃′

G also is not
rational. Since the derivative of any rational function is also rational, this shows

that σ̃G also is not a rational function. Since the growth series of the set Σ̃G is not
rational in this case, we must also have that this set is not a regular language. �
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3. Geodesic conjugacy series and languages

Given a finite simplicial graph with a group attached to each vertex, the asso-
ciated graph product is the group generated by the vertex groups with the added
relations that elements of distinct adjacent vertex groups commute. This construc-
tion often preserves geometric, algebraic or algorithmic properties of groups. In
particular Loeffler, Meier, and Worthington [15] have shown that regularity of the
full language Γ of geodesics (with respect to the union of the generating sets for the
vertex groups) is preserved by the graph product construction. Theorem 3.1 gives a
further illustration of this behavior, showing that regularity of the pair of languages

Γ and Γ̃ is preserved by graph products.

Theorem 3.1. If G is a graph product of groups Gi with 1 ≤ i ≤ n, and each Gi

has a finite inverse-closed generating set Xi such that both Γ(Gi,Xi) and Γ̃(Gi,Xi)
are regular, then both the geodesic language Γ(G,∪n

i=1Xi) and the geodesic conjugacy

language Γ̃(G,∪n
i=1Xi) are also regular.

Before proceeding with the proof of Theorem 3.1, we need some preliminary no-
tation and results. Let Λ be a finite simplicial graph with n vertices v1, ..., vn and
suppose that for each 1 ≤ i ≤ n the vertex vi is labeled by a group Gi that has a
finite inverse-closed generating set Xi with geodesic language Γi := Γ(Gi,Xi) and

geodesic conjugacy language Γ̃i := Γ̃(Gi,Xi). (Note that two vertices of Λ are con-
sidered to be adjacent here if the vertices are distinct and joined by an edge.) For
two words u,w ∈ X∗

i , we write u =Gi
w if u and w represent the same element

of Gi, and u ∼i w if u and w represent conjugate elements of Gi. Let G be the
associated graph product with generating set X := ∪n

i=1Xi. For words y, z ∈ X∗,
write y =G z if y and z represent the same element of G, and y ∼G z if y and z

represent conjugate elements of G. Also let Γ and Γ̃ denote the geodesic language
and geodesic conjugacy language, respectively, for G over X.

For each i, we define the centralizing set Ci to be the union of the sets Xj such that
the vertices vi and vj are adjacent in the graph Λ. Given a word w = a1 · · · am with
each ai ∈ X, the centralizing set C(w) associated to w is defined by C(w) := ∩m

i=1Cji
,

where for each 1 ≤ i ≤ m, the letter ai lies in the set Xji
. That is, C(w) is the subset

of X that commutes with every letter of w from the graph product construction.
We define several types of rewriting operations on words over X as follows.

(x0): Local reduction: yuz → ywz with y, z ∈ X∗, u,w ∈ X∗
i , u =Gi

w, and
l(u) > l(w).

(x1): Local exchange: yuz → ywz with y, z ∈ X∗, u,w ∈ X∗
i , u =Gi

w, and
l(u) = l(w).

(x2): Shuffle: yuwz → ywuz with y, z ∈ X∗, u ∈ X∗
i , w ∈ X∗

j , and vi, vj

adjacent in Λ.
(x3): Cyclic conjugation: yz → zy with y, z ∈ X∗.
(x4): Conjugacy exchange: uy → wy with y ∈ X∗, u,w ∈ X∗

i , Xi ⊆ C(y),
u ∼i w, and l(u) = l(w).
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(x5): Conjugacy reduction: uy → wy with y ∈ X∗, u,w ∈ X∗
i , Xi ⊆ C(y),

u ∼i w, and l(u) > l(w).

For 0 ≤ j ≤ 5, we write y
xj
→ z if y is rewritten to z with a single application of

operation (xj). Given a subset α of 0− 5, we write y
xα∗
→ z if z can obtained from y

by a finite (possibly zero) number of rewritings of the types (xj) with j in the set
α. Note that rewriting operations (x1)-(x4) preserve word length, and (x0), (x5)
decrease word length.

A word y ∈ X∗ is trimmed if whenever y
x0−2∗
→ z, no operation of type (x0)

can ever occur. The word y is conjugationally trimmed if whenever y
x0−5∗
→ z, no

operation of type (x0) or (x5) can occur.
For each i, we define a monoid homomorphism πi : X∗ → (Xi ∪ {$})∗, where $

denotes a letter not in X, by defining

πi(a) :=





a if a ∈ Xi

$ if a ∈ X \ (Xi ∪ Ci)

1 if a ∈ Ci

Given any subset t of X, we define the support supp(t) of t to be the set of all
vertices vi of Λ such that t contains an element of Xi. Let T be the set of all
nonempty subsets t of X satisfying the properties that supp(t) is a clique of Λ, and
for each vi ∈ supp(t), the intersection t∩Xi is a single element of Xi. Note that for
each t = {a1, ..., ak} ∈ T , whenever ai1 , ..., aik is another arrangement of the letters
in t, then a1 · · · ak =G ai1 · · · aik . Hence t denotes a well-defined element of G. Also
note that for each a ∈ X, we have {a} ∈ T , and a is the element of G associated to
{a}. By slight abuse of notation, we will consider X ⊆ T ⊆ G. Now T is another
inverse-closed generating set for G.

Example 3.2. For the graph product of three infinite cyclic groups Gi = 〈ai〉
(1 ≤ i ≤ 3), if the only adjacent pair of vertices is v2, v3, then the graph product
group G = GΛ = G1 ∗ (G2 × G3) has generating sets
X = {a1, a

−1
1 , a2, a

−1
2 , a3, a

−1
3 } and

T = { {a1}, {a
−1
1 }, {a2}, {a

−1
2 }, {a3}, {a

−1
3 }, {a2a3}, {a

−1
2 a3}, {a2a

−1
3 }, {a−1

2 a−1
3 } }.

Analogous to the operations above on words over X, we define three sets of
rewriting rules on words over T as follows. For each index i fix a total ordering on
Xi, and let <i denote the corresponding shortlex ordering on X∗

i . To ease notation,
we let the empty set {} denote the empty word over T . Whenever t ∈ T ∪ {∅},
a ∈ X, t ∪ {a} ∈ T , and t ∩ {a} = ∅, we let {a, t} denote the set t ∪ {a}.

(R0): {a1, t1} · · · {am, tm} → {b1, t1} · · · {bk, tk}tk+1 · · · tm whenever there is
an index 1 ≤ i ≤ n such that for each 1 ≤ j ≤ m, aj, bj ∈ Xi, tj ∈ T ∪ {∅},
and {aj , tj} ∈ T ; k < m; and a1 · · · am =Gi

b1 · · · bk.
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(R1): {a1, t1} · · · {am, tm} → {b1, t1} · · · {bm, tm} whenever there is an index
1 ≤ i ≤ n such that for each 1 ≤ j ≤ m, aj, bj ∈ Xi, tj ∈ T ∪ {∅},
{aj , tj} ∈ T ; a1 · · · am =Gi

b1 · · · bm; and a1 · · · am >i b1 · · · bm.
(R2): t{a, t′} → {a, t}t′ whenever a ∈ X, t ∈ T , t′ ∈ T∪{∅}, and {a, t}, {a, t′} ∈

T .

Also in analogy with the operations above on X∗, whenever 0 ≤ j ≤ 2, α ⊆ {0, 1, 2}

and w, x ∈ T ∗, we write w
Rj
→ x if w rewrites to x via exactly one application of rule

(Rj), and w
Rα∗
→ x if x can be obtained from w by a finite (possibly zero) number of

rewritings using rules of the type (Rj) for j ∈ α.
Let R denote the set of all rewriting rules of the form (R0), (R1), and (R2). Note

that the generating set T of G together with the relations given by the rules of R
form a monoid presentation of G; hence, (T,R) is a rewriting system for the graph
product group G. We refer the reader to Sims’ text [21] for definitions and details
on rewriting systems for groups which we use in this section.

Define a partial ordering on T by {a, t} > {b, t} whenever a, b ∈ Xi for some i,
t ∈ T ∪∅, {a, t} ∈ T , and a >i b; and by {a, t} < t whenever a ∈ X and t, {a, t} ∈ T .
For each t in T , define the weight wt(t) of t to be the number of elements of t as a
subset of X (equivalently, wt(t) is the number of vertices in supp(t)). Then all of
the rules in the rewriting system R decrease the associated weightlex ordering on
T ∗. Since the weightlex ordering is compatible with concatenation and well-founded,
no word w ∈ T ∗ can be rewritten infinitely many times; that is, the system R is
terminating. One can check via the Knuth-Bendix algorithm [21, Chapter 2] that
this system is also confluent, i.e., that whenever a word w rewrites two words w → w′

and w → w′′ using these rules, then there is a word w′′′ such that w′ R0−2∗
→ w′′′ and

w′ R0−2∗
→ w′′′. (This check is provided by the present authors in [4, Appendix]; an

alternative proof of this can be found in [11, Theorem C]. See Example 3.6 below
for details of this rewriting system for an example of a right-angled Coxeter group.)

Hence for each word w ∈ X∗ there is a unique word irr(w) in T ∗ that is irreducible

(i.e. cannot be rewritten) such that w
R0−2∗
→ irr(w), and each element g ∈ G is

represented by a unique word irr(g) in T ∗ that is irreducible with respect to the
rewriting rules in R [21, Prop. 2.4, p. 54]. That is, the set

irr(R) := {irr(g) | g ∈ G}

is a set of weightlex normal forms for G over T .
For each t ∈ T , let a1, ..., ak be a choice of an ordered listing of the elements of

the set t, and let h(t) := a1 · · · ak. Then h determines a monoid homomorphism
h : T ∗ → X∗. For each w ∈ X∗, let Θ(w) := h(irr(w)). Then the set

h(irr(R)) = {Θ(w) | w ∈ X∗}

is a set of normal forms for G over the original alphabet X.
In Proposition 3.3 below, we show that the geodesic words for the graph product

group G over X are exactly the trimmed words, and can be characterized as an
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intersection of homomorphic inverse images via these πi maps. Although the equiv-
alence of (i), (ii), and (iii) of this Proposition follows from results in [11] and [15],
we include some details here for a condensed exposition and because the further
equivalence with (iv) will be needed for our proof of Proposition 3.5 below.

Proposition 3.3. Let G be a graph product of the groups Gi for 1 ≤ i ≤ n, Let X =
∪n

i=1Xi where Xi is a finite inverse-closed generating set for Gi and Γi := Γ(Gi,Xi)
for each i, and let y ∈ X∗. The following are equivalent.

(i): y is a geodesic word for G with respect to X.
(ii): y is a trimmed word over X.
(iii): y ∈ ∩n

i=1π
−1
i (Γi($Γi)

∗).

(iv): y
x1−2∗
→ Θ(y).

Proof. (i) ⇒ (ii): If y is not trimmed, then y can be rewritten using length-preserving

operations y
x1−2∗
→ z to a word z that can be further rewritten using a length-reducing

operation of type (x0). Hence y cannot be a geodesic.

(ii) ⇒ (iii): Suppose that πi(y) ∈ (Xi ∪ {$})∗ \ (Γi($Γi)
∗) for some i. Then πi(y) =

y0$y1 · · · $yk for some k ≥ 0 and each yj ∈ X∗
i , where for some j we have yj /∈ Γi.

Then y
x2∗
→ y′yjy

′′, and a local reduction (operation of type (x0)) may be applied to
the latter. Hence y is not trimmed.

(iii) ⇒ (iv): Suppose that y ∈ ∩n
i=1π

−1
i (Γi($Γi)

∗).
Each rule (Rj) of the rewriting system R gives rise to a commutative diagram via

the map h with a sequence of operations on words over X. In particular, for any

words w, x ∈ T ∗ with w
R0−2
→ x, we have

w
R0
−→ x w

R1
−→ x w

R2
−→ x

h ↓ ↓ h h ↓ ↓ h h ↓ ↓ h

h(w)
x2∗
→

x0
→

x2∗
→ h(x) h(w)

x2∗
→

x1
→

x2∗
→ h(x) h(w)

x2∗
−→ h(x)

For 1 ≤ i ≤ n and 0 ≤ j ≤ 1 we can refine the operation (xj) by defining the
rewriting operation (xji) to denote an operation of type (xj) in which a subword
over Xi is rewritten, and similarly we let rewriting rule (Rji) denote a rule of type
(Rj) in which effectively an X∗

i subword is rewritten.
Using these refined operations and the maps πi, we can extend the above diagrams

to words over Xi ∪ {$} as follows. We say that a rewriting operation yuz → yvz,
for y, z ∈ (Xi ∪ {$})∗ and u, v ∈ Xi with u =Gi

v, is of type (s0i) if l(u) > l(v) and

of type (s1i) if l(u) = l(v). Then for any words w, x ∈ X∗ with w
x0−2
→ x, and any

j ∈ {0, 1} and 1 ≤ i, k ≤ n with i 6= k, we have

w
xji
−→ x w

x1k
−→ x w

x2
−→ x

πi ↓ ↓ πi πi ↓ ↓ πi πi ↓ ↓ πi

πi(w)
sji
−→ πi(x) πi(w)

id
−→ πi(x) πi(w)

id
−→ πi(x)



14 LAURA CIOBANU AND SUSAN HERMILLER

where id denotes the identity map on (Xi ∪ {$})∗. Hence for any words w, x ∈ T ∗

with w
R0−2
→ x and any j ∈ {0, 1} and 1 ≤ i, k ≤ n with i 6= k, we have

w
Rji
−→ x w

R1k
−→ x w

R2
−→ x

πi ◦ h ↓ ↓ πi ◦ h πi ◦ h ↓ ↓ πi ◦ h πi ◦ h ↓ ↓ πi ◦ h

πi(h(w))
sji
−→ πi(h(x)) πi(h(w))

id
−→ πi(h(x)) πi(h(w))

id
−→ πi(h(x)) .

For our word y ∈ ∩n
i=1π

−1
i (Γi($Γi)

∗), the inclusion map ι : X∗ → T ∗ allows us to
consider y = ι(y) as a word over the alphabet T , where h(ι(y)) = h(y) = y. Since

R is a terminating and confluent rewriting system, we have y
R0−2∗
→ irr(y), and so

by the commutative diagrams above, y
x0−2∗
→ Θ(y).

Suppose that an operation of type (x0) appears in this sequence of rewritings.

Then y
x1−2∗
→ y′

x0i
→ z

x0−2∗
→ Θ(y) for some y′, z ∈ X∗ and some 1 ≤ i ≤ n. Again

applying the commutative diagrams above, then πi(y)
s1i∗
→ πi(y

′)
s0i
→ πi(z). However,

operations of type (s1i) map elements of Γi($Γi)
∗ to Γi($Γi)

∗, so πi(y
′) =∈ Γi($Γi)

∗

and no operation of type (s0i) can be applied to πi(y
′), giving a contradiction.

(iv) ⇒ (i): Suppose that y
x1−2∗
→ Θ(y). Then lX(y) = lX(Θ(y)). If z is the shortlex

least representative over X of the same element of G as y, then since the set {Θ(w)}

is a set of normal forms, we have Θ(z) = Θ(y). Now z = ι(z)
R0−2∗
→ irr(z), and so by

the argument above we have z = h(z)
x0−2∗
→ h(irr(z)) = Θ(z). However, since z is

geodesic, no length-decreasing operations can apply, so we have lX(z) = lX(Θ(z)) =
lX(y). Therefore y is also geodesic. �

In the next Corollary we collect for later use two other results that follow from
the proof of Proposition 3.3.

Corollary 3.4. Using the notation above:

(1) The subset h(irr(R)) = {Θ(w) | w ∈ X∗} ⊆ X∗ is a set of geodesic normal
forms for G over X.

(2) For any word w ∈ X∗ there is a sequence of rewriting operations w
x0−2∗
→

Θ(w).

Proof. Statement (1) is shown in the proof of (iv) ⇒ (i) above. For (2), let w be

any element of X∗. Using the inclusion map ι : X∗ → T ∗, we have w = ι(w)
R0−2∗
→

irr(w), and so from the first set of commutative diagrams in the proof of (iii) ⇒

(iv) in Proposition 3.3 above, we have w = h(ι(w))
x0−2∗
→ Θ(w). �

In the following Proposition we show that a result similar to Proposition 3.3 holds
for conjugacy geodesics.

Proposition 3.5. Let G be a graph product of the groups Gi for 1 ≤ i ≤ n and
let X = ∪n

i=1Xi where Xi is a finite inverse-closed generating set for Gi for each i.
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Also for each i let Γi := Γ(Gi,Xi), Γ̃i := Γ̃(Gi,Xi), and

Ũi := {u0$u1 · · · $um | m ≥ 1 and u1, ..., um−1, umu0 ∈ Γi},

and let y ∈ X∗. The following are equivalent.

(i): y is a conjugacy geodesic for G with respect to X.
(ii): y is a conjugationally trimmed word over X.

(iii): y ∈ ∩n
i=1π

−1
i (Γ̃i ∪ Ũi).

Proof. (i) ⇒ (ii): Suppose that y ∈ X∗ is not conjugationally trimmed. Then

y
x1−4∗
→ z for some word z that can be rewritten using a length-reducing operation

of type (x0) or (x5) to a word representing an element of the same conjugacy class.
Since l(y) = l(z), then y cannot be a conjugacy geodesic.

(ii) ⇒ (iii): Suppose that y /∈ ∩n
i=1π

−1
i (Γ̃i ∪ Ũi). Then there is an index i such that

πi(y) ∈ (Xi ∪ {$})∗ \ (Γ̃i ∪ Ũi). If πi(y) ∈ X∗
i , then all letters of y lie in Xi ∪Ci, and

so y
x2∗
→ πi(y)y′ for some y′ ∈ C∗

i . Now πi(y) /∈ Γ̃i implies that a conjugacy reduction
(x5) can be applied to the word πi(y)y′, and so y cannot be conjugationally trimmed
in this case. On the other hand, if πi(y) /∈ X∗

i , then πi(y) = u0$ · · · $um such that
m ≥ 1, each ui ∈ X∗

i , and at least one of u1, ..., um−1, or umu0 does not lie in

Γi. A similar argument shows that in this case y
x2−3∗
→ z for a word z to which a

local reduction (x0) can be applied, implying again that y cannot be conjugationally
trimmed.

(iii) ⇒ (i): Suppose that y ∈ ∩n
i=1π

−1
i (Γ̃i∪Ũi), but that y is not a conjugacy geodesic.

(Note that since Γ̃i ⊆ Γi and Ũi ⊆ Γi($Γi)
∗, Proposition 3.3 implies that the word

y is a geodesic for G over X.) Then there is a geodesic word w ∈ X∗ such that
the element wyw−1 of G is represented by a word over X that is shorter than y.
In particular, the result in Corollary 3.4(1) that the Θ normal forms are geodesics
shows that the word Θ(wyw−1) must then be shorter than y. Choose such a pair

of words y ∈ ∩n
i=1π

−1
i (Γ̃i ∪ Ũi) and w ∈ Γ = Γ(G,X) with lX(Θ(wyw−1)) < lX(y)

such that lX(y) + 2lX(w) is least possible among all pairs with these properties.

Using Corollary 3.4(2) we have wyw−1 x0−2∗
→ Θ(wyw−1) (where w−1 is the sym-

bolic inverse of w over X). Since lX(Θ(wyw−1)) < lX(y), at least one operation of
type (x0) must apply in this sequence of rewriting operations.

Since property (iii) of Proposition 3.5 holds for y, for each 1 ≤ i ≤ n we can write

πi(y) = yiuiy
′
i with either yi ∈ Γ̃i and ui = y′i = λ (where λ denotes the empty

word), or ui ∈ $(Γi$)
∗ and y′iyi ∈ Γi. Since w is a geodesic, then for each 1 ≤ i ≤ n,

using Proposition 3.3 we can write πi(w) = viwi with vi ∈ (Γi$)
∗ and wi ∈ Γi. Then

πi(wyw−1) = viwiyiuiy
′
iw

−1
i v−1

i (where the formal inverse of a word b1$ · · · bk$ with

each bj ∈ X∗
i is defined to be $b−1

k · · · $b−1
1 ).

In our commutative diagrams in the proof above, we did not consider the interac-
tion of rewriting operations of type (x0i) with the map πk when k 6= i, but we need

to do so now. For any word s ∈ (Xj ∪ $)∗, we write s
t∗
→ s′ if s′ can be obtained
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from s by finitely many (possibly zero) replacements $$ → $; i.e. by shortening
but not eliminating subwords that are strings of $ signs. Suppose that z ∈ X∗ and
πi(z) = abc with a ∈ (X∗

i $)∗, b ∈ X∗
i , and c ∈ ($X∗

i )∗. Suppose that the operation

b
x0i
→ b′ induces the operation z

x0i
→ z′ := ab′c, and that λ 6= b′ ∈ X∗

i . If the vertex vj

is adjacent to vi in the graph Λ, and the vertex vk is not adjacent to vi, then

z
x0i
−→ z′ z

x0i
−→ z′

πj ↓ ↓ πj πk ↓ ↓ πk

πj(z)
id
−→ πj(z

′) πk(z)
t∗
−→ πk(z

′)

In the following claim, we use these commutative diagrams to show that in the

process of rewriting wyw−1 x0−2∗
→ Θ(wyw−1), each time an (x0i) rewriting operation

is applied, then on the level of images under the πj maps, when j 6= i the effect is

the application of a
t∗
→ operation, and when j = i, effectively either a rewrite of the

wiyiw
−1
i subword of wyw−1 is replaced by a word of length at least l(yi) (in the case

that πi(y) ∈ Γ̃i) or rewrites of the wiyi and y′iw
−1
i subwords of wyw−1 are replaced

by words of length at least l(yi) + l(y′i) (otherwise).

Claim: Suppose that wyw−1 x0−2∗
→ z

x0i
→ x

x0−2∗
→ Θ(wyw−1) and for each 1 ≤ j ≤ n

the word z ∈ X∗ satisfies either:

(a): In the case that πj(y) = yj ∈ Γ̃j:
πj(z) = ṽjzj ṽ

′
j for some

ṽj ∈ (Γj$)
∗, ṽ′j ∈ ($Γj)

∗, and zj ∈ X∗
j such that

vj
t∗
→ ṽj , v−1

j
t∗
→ ṽ′j , zj =Gj

wjyjw
−1
j and

l(yj) ≤ l(zj) ≤ l(yj) + 2l(wj),
or

(b): In the case that πj(y) ∈ Ũj :
πj(z) = ṽjzj ũjz

′
j ṽ

′
j for some

ũj ∈ $(Γj$)
∗, ṽj ∈ (Γj$)

∗, ṽ′j ∈ ($Γj)
∗, and zj , z

′
j ∈ X∗

j such that

uj
t∗
→ ũj , vj

t∗
→ ṽj, v−1

j
t∗
→ ṽ′j, zj =Gj

wjyj , z′j =Gj
y′jw

−1
j , and l(yj)+ l(y′j) ≤

l(zj) + l(z′j) ≤ l(yj) + l(y′j) + 2l(wj).

Then for each 1 ≤ j ≤ n the word x ∈ X∗ also satisfies either:

(a’): In the case that πj(y) = yj ∈ Γ̃j:
πj(x) = v̂jxj v̂

′
j for some

v̂j ∈ (Γj$)
∗, v̂′j ∈ ($Γj)

∗, and xj ∈ X∗
j such that

vj
t∗
→ v̂j , v−1

j
t∗
→ v̂′j , xj =Gj

wjyjw
−1
j and

l(yj) ≤ l(xj) ≤ l(yj) + 2l(wj), or

(b’): In the case that πj(y) ∈ Ũj :
πj(x) = v̂jxjûjx

′
j v̂

′
j for some

ûj ∈ $(Γj$)
∗, v̂j ∈ (Γj$)

∗, v̂′j ∈ ($Γj)
∗, and xj, x

′
j ∈ X∗

j such that
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uj
t∗
→ ûj , vj

t∗
→ v̂j , v−1

j
t∗
→ v̂′j , xj =Gj

wjyj , x′
j =Gj

y′jw
−1
j , and l(yj)+ l(y′j) ≤

l(xj) + l(x′
j) ≤ l(yj) + l(y′j) + 2l(wj).

Proof of claim. Since no length reducing operation z
x0i
→ x can be performed

on a subword a of z satisfying πi(a) ∈ Γi($Γi)
∗, the associated operation

πi(z)
s0i
→ πi(x) must apply to a subword of πi(z) disjoint from the ṽi, ṽ−1

i ,
and ũi subwords.
Case 1. Suppose that πi(y) = yi ∈ Γ̃i. Then the associated (s0i) operation
must have the form ṽiziṽ

′
i → v̂ixiv̂

′
i for some xi ∈ X∗

i where v̂i = ṽi, v̂′i = ṽ′i,

xi =Gi
zi =Gi

wiyiw
−1
i , and l(xi) < l(zi) ≤ l(yi) + 2l(wi). Now since xi ∼i yi

and the word yi = πi(y) ∈ Γ̃i is a conjugacy geodesic for the group Gi over the
generating set Xi in this case, we must have l(yi) ≤ l(xi).

If xi were the empty word λ, then since xi ∼i yi and yi ∈ Γ̃i, we have yi = λ

as well. Then wiw
−1
i

s0−1i∗
→ zi

s0i
→ xi, so we have l(wi) > 0. Now w

x2∗
→ w̃wi for

a word w̃ ∈ X∗, wyw−1 =G w̃yw̃−1, and lX(w) > lX(w̃). But then replacing

w with w̃ contradicts our choice of words y ∈ ∩n
i=1π

−1
i (Γ̃i ∪ Ũi) and w ∈ Γ

with lX(Θ(wyw−1)) < lX(y) and lX(y) + 2lX(w) minimal with respect to this
property. Hence l(xi) ≥ 1.

Then the commutative diagrams above the Claim show that for all j 6= i,

πj(z)
t∗
→ πj(x). Hence vj

t∗
→ ṽj

t∗
→ v̂j and since vj , ṽj ∈ (Γi$)

∗, then v̂j ∈ (Γi$)
∗.

The proofs that uj
t∗
→ ûj ∈ $(Γi$)

∗ and v′j
t∗
→ v̂′j ∈ ($Γi)

∗ are identical. Since the

subwords zj and z′j of πj(z) lie in X∗
j , the operation πj(z)

t∗
→ πj(x) can’t affect

these subwords, and so zj = xj and z′j = x′
j for all indices j 6= i. Therefore for

the word x, conditions (a’) or (b’) hold for all indices j, completing Case 1.

Case 2. Suppose that πi(y) ∈ Ũi. Similar to the argument in the previous case,

the (s0i) operation associated to the rewriting operation z
x0i
→ x has the form

πi(z) = ṽiziũiz
′
iṽ

′
i → v̂ixiûix

′
iv̂

′
i = πi(x) where ṽi = v̂i, ũi = ûi, v̂′i = ṽ′i, and

either xi =Gi
zi with l(xi) < l(zi) and x′

i = z′i, or else xi = zi and x′
i =Gi

z′i with
l(x′

i) < l(z′i). We consider the first of these two forms of the rewriting operation;
the proof in Case 2 for the second form is similar. Now xi =Gi

zi =Gi
wiyi

and x′
i = z′i =Gi

y′iw
−1
i with l(xi) + l(x′

i) < l(zi) + l(z′i) ≤ l(yi) + l(y′i) + 2l(wi).

Moreover, x′
ixi =Gi

y′iw
−1
i wiyi =Gi

y′iyi. The fact that yiuiy
′
i = πi(y) ∈ Ũi in

this case implies that y′iyi ∈ Γi, i.e., y′iyi is a geodesic word. Hence l(yi)+l(y′i) ≤
l(xi) + l(x′

i).

If xi were the empty word, then since xi =Gi
wiyi and wi ∈ Γi, the word w−1

i

is another geodesic representative of yi, and so y′iw
−1
i is also geodesic. As in the

previous case, w
x2∗
→ w′wi and y

x2∗
→ yiy

′′y′i. But then replacing w with w′ and y

with y′′y′iw
−1
i again contradicts our choice of words y ∈ ∩n

i=1π
−1
i (Γ̃i ∪ Ũi) and
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w ∈ Γ with lX(Θ(wyw−1)) < lX(y) and lX(y) + 2lX(w) minimal with respect
to this property. Hence l(xi) ≥ 1. Similarly l(x′

i) ≥ 1.

Then for all j 6= i, πj(z)
t∗
→ πj(x). Therefore as in the prior case, for the

word x, condition (a’) or (b’) holds for all indices j, completing Case 2 and the
proof of the Claim.

Since the word wyw−1 satisfies the property that one of (a) or (b) holds for all 1 ≤
j ≤ n, iteratively applying this claim shows that for each j, one of (a’) or (b’) must
hold for the normal form word x := Θ(wyw−1). Denoting the number of occurrences

of Xi letters in a word u over Xi ∪ $ by li(u), then whenever u
t∗
→ ũ we have

li(u) = li(ũ). Therefore lX(Θ(wyw−1)) =
∑n

i=1 li(πi(Θ(wyw−1))) ≥
∑n

i=1 l(yi) +
li(ui) + l(y′i) = lX(y). But our initial assumption on the pair y,w included the
inequality lX(Θ(wyw−1)) < lX(y), resulting in the required contradiction. �

We are now ready to prove Theorem 3.1.

Proof. The class of regular languages is closed under finitely many operations of
union, intersection, concatenation, and Kleene star (i.e. ()∗), and is closed under
inverse images of monoid homomorphisms (see, for example, [13, Chapter 3]).

Proposition 3.3 shows that Γ = ∩n
i=1π

−1
i (Γi($Γi)

∗). Then applying these closure
properties yields a new proof of the result of Loeffler, Meier, and Worthington [15,
Theorem 1] that whenever the sets Γi of geodesics for the vertex groups Gi are
regular languages, then the language Γ of geodesics for the graph product group G
over X is also regular.

From Proposition 3.5 we have that the language of conjugacy geodesics for the

graph product group G over the generating set X satisfies Γ̃ = ∩n
i=1π

−1
i (Γ̃i∪ Ũi). By

hypothesis the language Γ̃i is regular for each i, and so the closure properties above

imply that it suffices to show that the language Ũi over Xi ∪ {$} is regular, given
that the language Γi over the alphabet Xi is regular. The set Γi is recognized by a
finite state automaton with a set Q = {q0, . . . qm} of m + 1 states, where q0 is the
start state, and with transition function δ : Q × Xi → Q. Then Γi can be written
as Γi = L0L0 ∪ · · · ∪ LmLm, where for each 0 ≤ j ≤ m, the set Lj is the language

of all the words w over Xi such that δ(q0, w) = qj and Lj is the set of all words z

such that δ(qj , z) is an accept state. Then Lj and Lj are regular languages. Now

Ũi = ∪m
j=0Lj$(Γi$)

∗Lj, and therefore Ũi is also a regular language. �

Example 3.6. A right-angled Coxeter group is a graph product of cyclic groups
Gi = 〈ai | a2

i = 1〉 of order 2. Then the graph product group G = GΛ has generating
set X = {ai}, and there is a bijection between T and the set of cliques of the graph Λ.
Theorem 3.1 shows that the geodesic language Γ(G,X) and the geodesic conjugacy

language Γ̃(G,X) are both regular, and so the geodesic growth series γ(G,X) and
geodesic conjugacy growth series γ̃(G,X) are both rational functions.

In this example we provide the details for both spherical and geodesic languages
and series for a specific right-angled Coxeter group, namely a graph product G =
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GΛ of three groups Gi = 〈ai | a2
i = 1〉 (1 ≤ i ≤ 3) such that in the graph Λ

the vertex pairs v1, v2 and v2, v3 are adjacent, but the vertices v2 and v3 are not
adjacent. That is, G = G1 × (G2 ∗ G3) = Z2 × (Z2 ∗ Z2). Here X = {a1, a2, a3} and
T = {{a1}, {a2}, {a3}, {a1, a2}, {a1, a3}}. The rewriting system

R := { {a1}
2 R0
→ 1, {a1}{a1, a2}

R0
→ {a2}, {a1}{a1, a3}

R0
→ {a3},

{a2}
2 R0
→ 1, {a2}{a1, a2}

R0
→ {a1},

{a3}
2 R0
→ 1, {a3}{a1, a3}

R0
→ {a1},

{a1, a2}{a1}
R0
→ {a2}, {a1, a2}{a2}

R0
→ {a1},

{a1, a2}
2 R0
→ {a2}{a2}, {a1, a2}{a1, a3}

R0
→ {a2}{a3},

{a1, a3}{a1}
R0
→ {a3}, {a1, a3}{a3}

R0
→ {a1},

{a1, a3}2 R0
→ {a3}{a3}, {a1, a3}{a1, a2}

R0
→ {a3}{a2},

{a1}{a2}
R2
→ {a1, a2}, {a1}{a3}

R2
→ {a1, a3},

{a2}{a1}
R2
→ {a1, a2}, {a2}{a1, a3}

R2
→ {a1, a2}{a3},

{a3}{a1}
R2
→ {a1, a3}, {a3}{a1, a2}

R2
→ {a1, a3}{a2} }

is a subset of the set of all rewriting rules of types (R0)-(R2), but is already sufficient
to be a complete rewriting system for G (see [4, Appendix]). Then the set irr(R) =
T ∗ \ T ∗LT ∗, where L is the finite set of words on the left hand sides of the rules in
R, is a regular language of normal forms for G over T . Since the class of regular
languages is closed under images of monoid homomorphisms ([13, Chapter 3]), then
the language h(irr(R)) is also regular. Since the language H := h(irr(R)) is a set
of geodesic normal forms for G over X, then the strict growth series satisfies fH =
σ(G,X); hence the spherical growth series σ(G,X) is rational. The combination
of Theorem 2.4 and Proposition 2.1 shows that the spherical conjugacy language

Σ̃(G,X) is regular and the spherical conjugacy growth series σ̃(G,X) is rational as
well.

The homomorphisms πi : X∗ → (Xi∪{$})∗ are defined by π1(a1) = a1, π1(a2) =
λ, π1(a3) = λ, π2(a1) = λ, π2(a2) = a2, π2(a3) = $, π3(a1) = λ, π3(a2) = $, and
π3(a3) = a3 . Proposition 3.3 implies that the geodesic language Γ := Γ(G,X) =
∩3

i=1π
−1
i ({λ, ai}(${λ, ai})

∗). Since the symbol $ does not appear in the image of
the map π1, then a geodesic word contains at most one occurrence of the letter a1.
Moreover, the preimage sets under π2 and π3 imply that any two occurrences of a2

must have an a3 between them, and vice-versa. Then

Γ = {λ, a3}(a2a3)
∗{λ, a1}(a2a3)

∗{λ, a2} ∪ {λ, a2}(a3a2)
∗{λ, a1}(a3a2)

∗{λ, a3} .

The strict growth function for this language satisfies φΓ(0) = 1, φΓ(1) = 3, and
φΓ(n) = 2n + 2 for all n ≥ 2. The geodesic growth series for this group satisfies
γ(G,X)(z) = (1 + z + z2 − z3)/(1 − z)2.

Applying Proposition 3.5, the geodesic conjugacy language is Γ̃ := Γ̃(G,X) =
∩3

i=1π
−1
i ({λ, ai} ∪ {λ, ai}(${λ, ai})

∗$ ∪ (${λ, ai})
∗$ai). Analyzing this in the same
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way, then

Γ̃ = {a2, a3, a1a2, a1a3, a2a1, a3a1} ∪ (a2a3)
∗{λ, a1, a2a1a3}(a2a3)

∗

∪(a3a2)
∗{λ, a1, a3a1a2}(a3a2)

∗ .

The strict growth function for this language satisfies φeΓ(0) = 1, φeΓ(1) = 3, φeΓ(2) =
6, φeΓ(3) = 6, φeΓ(2k) = 2, and φeΓ(2k + 1) = 4k + 2 for all k ≥ 2. Then the geodesic

conjugacy growth series is given by γ̃(G,X)(z) = (1+3z+4z2 −9z4 +z5 +4z6)/(1−
z2)2.

Example 3.7. Let G be the projective special linear group G := PSL2(Z) =
Z2 ∗ Z3 = 〈a, b, c | a2 = 1, b2 = c, bc = 1〉 with the generating set X = {a, b, c}.

Theorem 2.4 shows that the spherical conjugacy language Σ̃(G,X) is not regular
and the corresponding spherical conjugacy growth series is not rational. However,

from Theorem 3.1 we have that the geodesic conjugacy language Γ̃(G,X) is regular
and the geodesic conjugacy growth series γ̃(G,X) is a rational function. Indeed, it
follows from Theorem 3.1 that for any graph product of finite groups, the geodesic
conjugacy language is regular and the geodesic conjugacy growth series is rational,
with respect to a union of finite generating sets of the vertex groups.

Theorem 3.8. Let G and H be groups with finite inverse-closed generating sets A
and B, respectively. Let γ̃G(z) := γ̃(G,A)(z) =

∑∞
i=0 riz

i and γ̃H(z) := γ̃(H,B)(z) =∑∞
i=0 siz

i be the geodesic conjugacy growth series, and let γG := γ(G,A) and γH :=
γ(H,B) be the geodesic growth series for these pairs.

(i) The geodesic conjugacy growth series γ̃× of the direct product G×H = 〈G,H |
[G,H]〉 of groups G and H with respect to the generating set A ∪ B is given by

γ̃× =
∑∞

i=0 δiz
i where δi :=

∑i
j=0

(
i
j

)
rjsi−j.

(ii) The geodesic conjugacy growth series γ̃∗ of the free product G∗H of the groups
G and H with respect to the generating set A ∪ B is given by

γ̃∗ − 1 = (γ̃G − 1) + (γ̃H − 1) − z
d

dz
ln [1 − (γG − 1)(γH − 1)] .

Proof. Denote the geodesic languages by Γ̃G := Γ̃(G,A), Γ̃H := Γ̃(H,B), ΓG :=
Γ(G,A), and ΓH := Γ(H,B).

(i) The proof in this case follows the same argument as the proof of the formula
for the geodesic growth series of G × H in terms of the geodesic growth series of G
and H in [15, Proposition 1]. In particular, in G×H each conjugacy geodesic word

w of length i can be obtained by taking a word y in Γ̃G of length 0 ≤ j ≤ i and a

word z in Γ̃H of length i− j, and “shuffling” the letters so that the letters of y and
z appear in the same order, but not necessarily contiguously, in w.

(ii) The geodesic conjugacy language Γ̃∗ := Γ̃(G ∗ H,A ∪ B) can be written as a
disjoint union

Γ̃∗ = {λ} ∪ (Γ̃G \ {λ}) ∪ (Γ̃H \ {λ}) ∪ Γ̃A• ∪ Γ̃B•
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where λ is the empty word, Γ̃A• is the set of all conjugacy geodesic words beginning

with a letter in A and containing at least one letter in B, and similarly Γ̃B• is the
set of all conjugacy geodesic words beginning with a letter in B and containing at
least one letter in A. As a consequence,

γ̃∗ = 1 + (γ̃G − 1) + (γ̃H − 1) + feΓA•

+ feΓB•

,

where as usual fL denotes the strict growth series of the language L. Now Γ̃A• can
also be decomposed as a disjoint union

Γ̃A• = ∪∞
n=1{y1z1 · · · ynznyn+1 | y2, ..., yn, yn+1y1 ∈ ΓG \ {λ}, y1 ∈ A+,

z1, ..., zn ∈ ΓH \ {λ}}.

As a consequence, the growth series of this language is

feΓA•

=
∞∑

n=1

(γH − 1)[(γG − 1)(γH − 1)]n−1

(
z

d

dz
γG

)
,

where the i-th coefficient in the series z d
dz γG =

∑∞
i=0 αiz

i, given by

αi = i · (# of geodesics in (G,A) of length i),

counts the number of pairs of words y1, yn with y1 ∈ A+, yn ∈ A∗, and yny1 a
geodesic for the pair (G,A) of length i. The formula for feΓB•

is obtained in the

same way. Putting these together, then

γ̃∗ = 1 + (γ̃G − 1) + (γ̃H − 1) +

∞∑

n=1

(γH − 1)[(γG − 1)(γH − 1)]n−1

(
z

d

dz
γG

)
+

∞∑

n=1

(γG − 1)[(γH − 1)(γG − 1)]n−1

(
z

d

dz
γH

)

= γ̃G + γ̃H − 1 + z

(
d

dz
γG

)
(γH − 1)

1

1 − (γG − 1)(γH − 1)
+

z

(
d

dz
γH

)
(γG − 1)

1

1 − (γG − 1)(γH − 1)

= γ̃G + γ̃H − 1 + z

(
d
dz γG

)
(γH − 1) +

(
d
dz γH

)
(γG − 1)

1 − (γG − 1)(γH − 1)
,

resulting in the required formula. �

Example 3.9. In the free group F2 = Z ∗Z, associate G = 〈a | 〉 with the first copy
of the integers and H = 〈b | 〉 with the second, and let A = {a, a−1}, B = {b, b−1}.
We have

γ̃G = γ̃H = γG = γH =
1 + z

1 − z
,
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and so 1 − (1 − γG)(1 − γH) = 1−2z−3z2

(1−z)2
. Plugging these into the formula in Theo-

rem 3.8(ii), we obtain

γ̃(F2, {a
±1, b±1}) = γ̃∗ =

1 + z − z2 − 9z3

1 − 3z − z2 + 3z3
.

(We note that in [20, Corollary 14.1] Rivin has computed the equality conjugacy
growth series for this group (see Section 4 for the definition of the equality con-
jugacy language and equality conjugacy growth series), and that in this example,
the equality conjugacy language and the geodesic conjugacy language are the same
set, and so the corresponding growth series are also equal. The rational function
above differs from Rivin’s formula by adding 1, because Rivin’s growth series does
not count the constant term corresponding to the empty word λ in the equality
conjugacy language.)

Example 3.10. Let G and H be finite groups with generating sets A := G \ {1G}
and B := H \ {1H}, and let m := |A| = |G| − 1 and n := |B| = |H| − 1. The

corresponding languages are Γ̃G = Γ(G,A) = A∪{λ} and Γ̃H = Γ(H,B) = B∪{λ},
where λ is the empty word, and hence we have growth series γ̃G = γ(G,A) = mz+1
and γ̃H = γ(H,B) = nz + 1. For the free product G ∗H, with generating set A∪B,
the formula in Theorem 3.8 shows that the geodesic conjugacy growth series is

γ̃∗(z) = γ̃(G ∗ H,A ∪ B)(z) =
1 + (m + n)z + mnz2 − mn(m + n)z3

1 − mnz2
.

In particular, for the group P := PSL2(Z) with the generating set X from Exam-
ple 3.7, the geodesic conjugacy growth series is given by the rational function

γ̃(P,X)(z) =
1 + 3z + 2z2 − 6z3

1 − 2z2
.

Proposition 3.11. If G and H are finite groups with a common subgroup K, then
the free product G ∗K H of G and H amalgamated over K, with respect to the
generating set X := G ∪ H ∪ K − {1}, has regular geodesic conjugacy language

Γ̃(G ∗K H,X) and rational geodesic conjugacy growth series γ̃(G ∗K H,X).

Proof. Let XG := G\K, XH := H\K, and XK := K\{1}; then X = XK∪XG∪XH .
Given a sequence x1, ..., xn of elements of X, this sequence is called cyclically reduced
if either n = 1 and x1 ∈ X or else n > 1 and for each 1 ≤ i ≤ n the elements xi

and xi+1(mod n) lie in XG ∪ XH and are from different factors (i.e. if xi ∈ XG then
xi+1 ∈ XH and vice versa), and the product x1 · · · xn in G ∗K H is the associated
cyclically reduced product. Every element of G ∗K H is conjugate to a cyclically
reduced product. Moreover, by [16, Theorem IV.2.8], given any cyclically reduced
sequence x1, ..., xn with n ≥ 2 and any g ∈ G ∗K H, every product of a cyclically
reduced sequence x′

1, ..., x
′
k satisfying gx1 · · · xkg

−1 =G∗KH x′
1 · · · x

′
k can be obtained

by cyclically permuting the original sequence x1, ..., xn and conjugating the resulting
product by an element of K. Now every conjugacy geodesic word over X must be
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a cyclically reduced product, and this theorem implies also that every cyclically
reduced product is a conjugacy geodesic. That is,

Γ̃(G ∗K H,X) = {λ} ∪ X ∪ (XGXH)∗ ∪ (XGXH)∗,

giving a regular expression for the language Γ̃(G ∗K H,X). �

4. Open questions

We remark that intermediate between the two conjugacy languages defined in
Section 1 is a third set of words given by the subset of Σ(G,X) defined by

Ẽ = Ẽ(G,X) := {yg | g ∈ G, |g| = |g|c} ,

which we refer to as the equality conjugacy language for G over X. It is immediate

from the definitions that Σ̃ ⊆ Ẽ ⊆ Γ̃. Moreover, the equality language can be
expressed as the intersection of the geodesic conjugacy language and the spherical

language; that is, Ẽ = Γ̃ ∩ Σ. We denote the strict growth series for this language
by

ǫ̃ = ǫ̃(G,X) := feE(G,X),

called the equality conjugacy growth series. In [20, Corollary 14.1] Rivin gives a
rational function formula for the equality conjugacy growth series (which he denotes
by F [CFk

](z)) for a finitely generated free group with respect to a free basis (see
also Example 3.9 for the rank 2 case), and so the free group does not give an
obstruction to rationality being preserved by free products. More generally, for
any right-angled Artin group G (i.e., graph product of infinite cyclic groups) with
canonical generating set X (the union of the cyclic generators of the vertex groups),
it follows from [11, Corollary 3.4 and proof of Theorem B] that Σ(G,X) is regular,

and from Theorem 3.1 that Γ̃(G,X) is regular, and hence Ẽ(G,X) is regular and
ǫ̃(G,X) is rational.

Question 4.1. If G is a graph product of finitely many groups Gi and each group Gi

has a finite inverse-closed generating set Xi such that Ẽ(Gi,Xi) is a regular language,

is the language Ẽ(G,∪iXi) regular? Is rationality of the equality conjugacy growth
series ǫ̃(G,X) preserved by direct and free products?

In some cases, regularity of languages and rationality of growth series associated to
groups are known to depend upon the generating set chosen. For example, Stoll [22]
has shown that rationality of the usual (cumulative) growth series bΣ(G,X) (and
hence also of the spherical growth series σ(G,X) = fΣ(G,X)) depends upon the
generating set for the higher Heisenberg groups, and Cannon [18, p. 268] has shown
that regularity of the geodesic language Γ(Z2

⋊ Z2,X) depends on the generating
set X for a semidirect product of Z

2 by the cyclic group of order 2. In the case
of conjugacy growth, Hull and Osin [14, Theorem 1.3] have shown an example of a
finitely generated group G with a finite index subgroup H such that the conjugacy
growth function βeΣ(G,X) grows exponentially, but H has only two conjugacy classes.
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Then the spherical and geodesic conjugacy growth series for G are both infinite
series, but these two series for H are both polynomials.

Question 4.2. Does there exist a finite inverse-closed generating set X for the free

group F on two generators such that Σ̃(F,X) is regular?

For the free basis which gives a non-regular spherical conjugacy language (Propo-
sition 2.2), we also consider formal language theoretic classes that are less restrictive
than context-free languages.

Question 4.3. Let F = F (a, b) be the free group on generators a and b. Is

Σ̃(F, {a±1, b±1}) an indexed language? A context-sensitive language?

In Corollary 2.3 we show that the spherical conjugacy language cannot be regular
(or indeed context-free) in any group that contains a free subgroup as a direct or
free factor, with respect to a generating set that is the union of the free basis and
the generators of the other factor. This leads us to wonder whether free groups are
“poison subgroups” from the viewpoint of regular spherical conjugacy languages.

Question 4.4. Let G be a group with F = F (a, b) as subgroup, and let X be an

inverse-closed generating set for G. Can Σ̃(G,X) be a regular language?

As we remarked in Section 1, Cannon has shown that for word hyperbolic groups,
the geodesic language for every finite generating set is regular [8, Chapter 3].

Question 4.5. Let G be a word hyperbolic group and let X be a finite generating

set for G. Is the geodesic conjugacy language Γ̃(G,X) necessarily regular?

In particular, is the geodesic conjugacy language for a (compact, finite genus)
surface group regular? What about the spherical conjugacy language? Since infinite
index subgroups of surface groups are free, answering Question 4.4 would shed some
light on the behavior of the spherical conjugacy language in surface groups.

In [9] Grigorchuk and Nagnibeda generalized the notion of growth functions for
finitely generated groups by considering the complete growth series for G over X
given by

ρ(z) :=

∞∑

i=0

(
∑

|g|=i

g)zi ∈ Z[G][[z]]

with coefficients in the integral group ring Z[G]. They define a concept of rationality
for such series, and show that for any word hyperbolic group with respect to any
generating set, the complete growth series is rational. Viewing the function ρ as a
generalization of the spherical growth series σ(G,X), one can analogously define the
complete conjugacy growth series to be

ρ̃(z) :=

∞∑

i=0

(
∑

|g|=|g|c=i

g)zi

in Z[G][[z]].
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Question 4.6. Is the complete conjugacy growth series ρ̃ rational for word hyperbolic
groups?
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