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Abstract. Autostackability for finitely generated groups is defined via
a topological property of the associated Cayley graph which can be en-
coded in a finite state automaton. Autostackable groups have solvable
word problem and an effective inductive procedure for constructing van
Kampen diagrams with respect to a canonical finite presentation. A
comparison with automatic groups is given. Another characterization
of autostackability is given in terms of prefix-rewriting systems. Ev-
ery group which admits a finite complete rewriting system or an asyn-
chronously automatic structure with respect to a prefix-closed set of
normal forms is also autostackable. As a consequence, the fundamental
group of every closed 3-manifold with any of the eight possible uniform
geometries is autostackable.

1. Introduction

A primary motivation for the definition of the class of automatic groups
is to make computing the word problem for 3-manifold groups tractable;
however, in their introduction of the theory of automatic groups, Epstein,
et. al. [10] showed that the fundamental group of a closed 3-manifold having
Nil or Sol geometry is not automatic. Brady [1] showed that there are Sol ge-
ometry groups that do not belong to the wider class of asynchronously auto-
matic groups. Bridson and Gilman [4] further relaxed the language theoretic
restriction on the associated normal forms, replacing regular with indexed
languages, and showed that every 3-manifold group has an asynchronous
combing with respect to an indexed language. More recently, Kharlam-
povich, Khoussainov, and Miasnikov [22] have defined the class of Cayley
automatic groups, extending the notion of an automatic structure (preserv-
ing the regular language restriction), but it is as yet unknown whether all Nil
and Sol 3-manifold groups are Cayley automatic. In this paper we define the
notion of autostackability for finitely generated groups using properties very
closely related to automatic structures, that holds for 3-manifold groups of
all uniform geometries.

Let G be a group with an inverse-closed finite generating set A, and let

Γ = Γ(G,A) be the associated Cayley graph. Let ~E be the set of directed

2010 Mathematics Subject Classification. 20F65; 20F10, 57M05, 68Q42.

1



2 M. BRITTENHAM, S. HERMILLER, AND D. HOLT

edges; for each g ∈ G and a ∈ A, let eg,a denote the directed edge of Γ
with initial vertex g, terminal vertex ga, and label a. Let N ⊂ A∗ be a
set of normal forms for G over A; for each g ∈ G, we denote the normal
form word representing g by yg. Note that whenever we have an equality of
words yga = yga or yg = ygaa

−1, then there is a van Kampen diagram for
the word ygay−1

ga that contains no 2-cells; in this case we call the edge eg,a

degenerate. Let ~EN ,d = ~Ed be the set of all degenerate directed edges, and

let ~EN ,r = ~Er := ~E \ ~Ed; we refer to elements of ~Er as recursive edges.

Definition 1.1. A group G with finite inverse-closed generating set A is
autostackable if there are a set N of normal forms for G over A containing
the empty word, a constant k, and a function φ : N ×A → A∗ such that the
following hold:

(1) The graph of the function φ,

graph(φ) := {(yg, a, φ(yg, a)) | g ∈ G, a ∈ A},

is a synchronously regular language.
(2) For each g ∈ G and a ∈ A, the word φ(yg, a) has length at most k

and represents the element a of G, and:

(2d) If eg,a ∈ ~EN ,d, then the equality of words φ(yg, a) = a holds.

(2r) The transitive closure <φ of the relation < on ~EN ,r, defined by

e′ < eg,a whenever eg,a, e
′ ∈ ~EN ,r and e′ is on the directed

path in Γ labeled φ(yg, a) starting at the vertex g
is a strict well-founded partial ordering.

Removing the algorithmic property in (1), the group G is called stackable
over the inverse-closed generating set A if property (2) holds for some normal
form set N (containing the empty word), constant k, and function φ : N ×
A → A∗. In [6], the first two authors define and study the class of stackable
groups. In [6, Lemma 1.5] they show that stackability implies that the finite
set Rc of words of the form φ(yg, a)a−1 (for g ∈ G and a ∈ A) is a set of
defining relators for G, and the set N of normal forms is closed under taking
prefixes. Hence the set N uniquely determines a maximal tree in the Cayley
graph Γ, consisting of the edges that lie on paths labeled by words in N .

This leads to a topological description of the concept of autostackability.
Let T be a maximal tree in Γ. For each g ∈ G and a ∈ A, we view the two
directed edges eg,a and ega,a−1 of Γ to have a single underlying undirected

edge in Γ. Let ~P be the set of all finite length directed edge paths in Γ.

A flow function associated to T is a function Φ : ~E → ~P satisfying the
properties that:

(a) For each edge e ∈ ~E, the path Φ(e) has the same initial and terminal
vertices as e.

(b-d) If the undirected edge underlying e lies in the tree T , then Φ(e) = e.
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(b-r) The transitive closure <Φ of the relation < on ~E, defined by
e′ < e whenever e′ lies on the path Φ(e) and the undirected
edges underlying both e and e′ do not lie in T ,

is a strict well-founded partial ordering.

That is, the map Φ fixes the edges lying in the tree T and describes a “flow”
of the non-tree edges toward the tree (or toward the basepoint). A flow

function is bounded if there is a constant k such that for all e ∈ ~E, the path
Φ(e) has length at most k.

For each element g ∈ G, let yg be the unique word labeling a geodesic path
in the tree T from the identity element 1 of G to g, and let NT := {yg | g ∈

G} be the corresponding set of normal forms. Let βT : NT ×A → ~E denote

the natural bijection defined by βT (yg, a) := eg,a, and let ρ : ~P → A∗ be the
function that maps each directed path to the word labeling that path in Γ.
The composition ρ ◦ Φ ◦ βT : N × A → A∗ is part of a stackable structure
for G over A, which we call the induced stacking function.Conversely, [6,
Lemma 1.5] implies that given a stacking function φ : N × A → A∗ from a

stackable structure, there is an induced flow function Φ : ~E → ~P , such that
Φ(eg,a) is the path in Γ starting at the vertex g labeled by the word φ(yg, a).
Thus we have the following characterizations.

Proposition 1.2. Let G be a group with a finite inverse-closed generating
set A. (1) The group G is stackable over A if and only if the Cayley graph
Γ(G,A) admits a maximal tree with an associated bounded flow function.
(2) The group G is autostackable over A if and only if there exists a maximal
tree in Γ(G,A) with a bounded flow function such that the graph of the
induced stacking function is synchronously regular.

In Section 2 of this paper, we give definitions and notation, and discuss
background on normal forms, van Kampen diagrams, and language theory.

Section 3 contains a comparison of the definitions for autostackable groups
versus automatic groups. We contrast word problem solutions and van Kam-
pen diagram constructions for these two classes of groups. In analogy with
the relationship between autostackable and stackable groups above, remov-
ing the algorithmic Property (i) of Definition 3.1 of automaticity yields the
definition of combable groups. In particular we show how to modify the
proof of [6, Proposition 1.7] to show the following.

Proposition 3.3. Autostackable groups are finitely presented and have solv-
able word problem.

The class of automatic groups is strictly contained in the class of asyn-
chronously automatic groups; in Section 4, we consider this larger class.

Theorem 4.1. Every group that has an asynchronously automatic structure
with a prefix-closed normal form set is autostackable.
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We note that although Epstein et. al. [10, Theorems 2.5.1,5.5.9] have
shown that every automatic group has an automatic structure with re-
spect to a set of normal forms, and also an automatic structure with re-
spect to a prefix-closed set of not necessarily unique representatives, it is
an open problem [10, Open Question 2.5.20] whether there must be an
automatic structure on a prefix-closed set of normal forms. Gilman has
given other characterizations of groups that are automatic with respect to
a prefix-closed normal form set in [12]. Groups known to have an auto-
matic structure with respect to prefix-closed normal forms include finite
groups [10], virtually abelian (and hence Euclidean) groups and word hy-
perbolic groups [10], Coxeter groups [5], Artin groups of finite type [7] and
of large type [28],[19], and small cancellation groups satisfying conditions
C ′′(p) − T (q) for (p, q) ∈ {(3, 6), (4, 4), (6, 3)} [21]. The class of automatic
groups with respect to prefix-closed normal forms is closed under graph
products [15, Theorem B] and finite extensions [10, Theorem 4.1.4].

In Section 5, we give a purely algorithmic characterization of autostacka-
bility, using another type of word problem solution, namely ‘prefix-sensitive
rewriting’. A convergent prefix-rewriting system for a group G consists of a
finite set A together with a subset R ⊂ A∗×A∗ such that as a monoid, G is
presented by G = Mon〈A | u = v whenever (u, v) ∈ R〉, and the rewriting
operations of the form uz → vz for all (u, v) ∈ R and z ∈ A∗ satisfy:

• Normal forms: Each g ∈ G is represented by exactly one irreducible
word (i.e. word that cannot be rewritten) over A.

• Termination: There does not exist an infinite sequence of rewritings
x → x1 → x2 → · · · .

A prefix-rewriting system is bounded if there exists a constant k such that
for each pair (u, v) ∈ R, there are words s, t, w ∈ A∗ with s and t of length
at most k such that u = ws and v = wt.

Theorem 5.3. Let G be a finitely generated group.
(1) The group G is stackable if and only if G admits a bounded convergent
prefix-rewriting system.
(2) The group G is autostackable if and only if G admits a synchronously
regular bounded convergent prefix-rewriting system.

As part of the proof of Theorem 5.3, in Proposition 5.2, we show that given
any synchronously regular bounded convergent prefix-rewriting system R for
G, there is a subset Q′ of R that is a synchronously regular bounded prefix-
rewriting system for G such that for every (u, v) ∈ Q′, every proper prefix of
u is irreducible over R, and no two distinct word pairs in Q′ have the same
left hand side.

In contrast to these results, Otto [27, Corollary 5.3] has shown that a
group is automatic with respect to a prefix-closed set of normal forms over a
monoid generating set A if and only if there exists a synchronously regular
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convergent prefix-rewriting system such that for every (u, v) ∈ R, the word
v is irreducible over R, and the word u is irreducible over all of the other
rewriting rules of R.

Synchronously regular bounded convergent prefix-rewriting systems are a
generalization of the more widely studied concept of finite convergent (also
called complete) rewriting systems, which admit rewriting operations of the
form wuz → wvz whenever (u, v) ∈ R and w, z ∈ A∗. Thus Theorem 5.3
yields:

Corollary 5.4. Every group that admits a finite convergent rewriting system
is autostackable.

Groups known to have a finite convergent rewriting system include finite
groups, alternating knot groups [8], surface groups [23], virtually abelian
groups, polycyclic groups, and more generally constructible solvable groups [13],
Coxeter groups of large type [14], and Artin groups of finite type [16] (see
also Le Chenadec’s [24] text for many more examples). This class of groups
is closed under graph products [15], extensions [13],[16], and certain amal-
gamated products and HNN extensions [13].

The iterated Baumslag-Solitar groups presented by 〈a0, a1, ..., ak | aa1

0 =
a2

0, ..., a
ak

k−1 = a2
k−1〉 were shown by Gersten [11, Section 6] to have Dehn

function asymptotic to a k-fold iterated exponential function, and also to
have a finite convergent rewriting system (see [17] for details). The following
is then an immediate consequence of the results above.

Corollary 1.3. The class of autostackable groups includes groups whose
Dehn functions’ growth is asymptotically equivalent to an iterated exponen-
tial function with arbitrarily many iteration steps.

This result is in strong contrast to the quadratic upper bound on the Dehn
function for any automatic group [10, Theorem 2.3.12].

Miller [26, p. 31] has shown that there exists a split extension of a finitely
generated free group by another finitely generated free group that has un-
solvable conjugacy problem. Since free-by-free groups admit finite complete
rewriting systems, the following is immediate.

Corollary 1.4. The class of autostackable groups includes groups with un-
solvable conjugacy problem.

Finally, we return to the motivation of computing the word problem
in 3-manifold groups. In [18], Hermiller and Shapiro show that if M is
a closed 3-manifold with uniform geometry that is not hyperbolic, then
π1(M) has a finite convergent rewriting system. On the other hand, Epstein
et. al. [10] show that every word hyperbolic group, and hence every hyper-
bolic 3-manifold fundamental group, is automatic with respect to a shortlex,
and hence prefix-closed, set of normal forms. Hence we obtain the following.
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Corollary 1.5. Every fundamental group of a closed 3-manifold with uni-
form geometry is autostackable.

2. Notation and background

Throughout this paper, let G be a group with a finite generating set A
that is closed under inversion, and let Γ be the associated Cayley graph.
Let A∗ denote the free monoid, i.e. the set of all finite words over A, and let
π : A∗ → G denote the canonical surjection. Whenever u and v lie in the
set A∗ of all words over A, we write u = v if u and v are the same word,
and u =G v if u and v represent the same element of G; i.e., if π(u) = π(v).
Let 1 denote the identity element of G and let λ denote the empty word in
A∗; then π(λ) = 1.

Given a word w ∈ A∗, let l(w) denote the length of w as a word over A.
For each a ∈ A, the symbol a−1 represents another element of A, and so for
each word u = a1 · · · am in A∗ with each ai in A, there is a formal inverse
word u−1 := a−1

m · · · a−1
1 in A∗.

2.1. Normal forms and van Kampen diagrams. A set N of normal
forms for G over A is a subset of the set A∗ such that the restriction of the
canonical surjection π : A∗ → G to N is a bijection. As in Section 1, the
symbol yg denotes the normal form for g ∈ G; by slight abuse of notation,
we use the symbol yw to denote the normal form for π(w) whenever w ∈ A∗.

Given a set R of defining relators for a group G, so that P = 〈A | R〉 is a
presentation for G, then for an arbitrary word w in A∗ that represents the
identity element 1 of G, there is a van Kampen diagram (or Dehn diagram)
∆ for w with respect to P. That is, ∆ is a finite, planar, contractible
combinatorial 2-complex with edges directed and labeled by elements of A,
satisfying the properties that the boundary of ∆ is an edge path labeled by
the word w starting at a basepoint vertex ∗ and reading counterclockwise,
and every 2-cell in ∆ has boundary labeled (in some orientation) by an
element of R. See [3] or [25] for more details on the theory of van Kampen
diagrams.

Let N be a set of normal forms for G over A such that each word w ∈ N
labels a simple path in the Cayley graph. For example, this property holds
if N is closed under taking prefixes of words. The “seashell” method to
construct a van Kampen diagram (with respect to the presentation G =
〈A | R〉) for any word w = b1 · · · bn ∈ A∗ that represents the identity of G is
as follows. For each i we denote the normal form word yi := yb1···bi

. Let ∆i

be a van Kampen diagram for the word yi−1biy
−1
i . By successively gluing

these diagrams along the simple normal form paths along their boundaries,
we obtain a planar van Kampen diagram for w; see Figure 1 for an idealized
picture. (See for example [10], [2], or [6] for more details.)
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Figure 1. Van Kampen diagram built with seashell method

2.2. Regular languages. For more details and proofs of the material in
this subsection, we refer the reader to [10] or [20].

A language over a finite set A is a subset of the set A∗ of all finite words
over A. We also refer to subsets of (A∗)n as languages over An. The set
A+ denotes the language A∗ \ {λ} of all nonempty words over A, and A≤k

denotes the finite language of all words over A of length at most k.

The regular languages over A are the subsets of A∗ obtained from the
finite subsets of A∗ using finitely many operations from among union, in-
tersection, complement, concatenation (S · T := {vw | v ∈ S and w ∈ T}),
and Kleene star (S0 := {λ}, Sn := Sn−1 · S and S∗ := ∪∞

n=0S
n). A finite

state automaton, or FSA, is a 5-tuple M := (A,Q, q0, P, δ), where Q is a
finite set called the set of states, q0 ∈ Q is the initial state, P ⊆ Q is the
set of accept states, and δ : Q ×A → Q is the transition function. The map
δ extends to a function (often given the same label) δ : Q × A∗ → Q by
recursively defining δ(q, wx) := δ(δ(q, w), x) whenever q ∈ Q, w ∈ A∗, and
x ∈ A. A word w ∈ A∗ is in the language accepted by M if and only if the
state δ(q0, w) lies in the set P . A language L over A is regular if and only
if L is the language accepted by a finite state automaton.

The class of regular languages is closed under both image and preimage
via monoid homomorphisms (see, for example, [20, Theorem 3.5]). The class
of regular sets is also closed under quotients (see [20, Theorem 3.6]); we write
out a special case of this in the following lemma for use in later sections of
this paper.

Lemma 2.1. [20, Theorem 3.6]) If A is a finite set, L ⊆ A∗ is a regular
language, and w ∈ A∗, then the quotient language L/w := {x ∈ A∗ | xw ∈
L} is also a regular language.

Let $ be a symbol not contained in A. The set An := (A∪{$})n\{($, ..., $)}
is the padded n-tuple alphabet derived from A. For any n-tuple of words u =
(u1, ..., un) ∈ (A∗)n, write ui = ai,1 · · · ai,ji

with each ai,m ∈ A for 1 ≤ i ≤ n
and 1 ≤ m ≤ ji. Let M := max{j1, ..., jn}, and define ũi := u$M−ji , so that



8 M. BRITTENHAM, S. HERMILLER, AND D. HOLT

each of ũ1, ..., ũn has length M . That is, ũi is a word over the alphabet
(A ∪ {$})∗, and we can write ũi = ci,1 · · · ci,M with each ci,m ∈ A ∪ {$}.
The word µ(u) := (c1,1, ..., cn,1) · · · (c1,M , ..., cn,M ) is the padded word over
the alphabet An induced by the n-tuple (u1, ..., un) in (A∗)n.

A subset L ⊆ (A∗)n is called synchronously regular if the padded extension
set µ(L) := {µ(u) | u ∈ L} of padded words associated to the elements of L is
a regular language over the alphabet An. The class of synchronously regular
languages is closed under finite unions and intersections, since the padded
extension of a union [resp. intersection] is the union [resp. intersection] of the
padded extensions. We also include two lemmas on synchronously regular
languages for use in later sections. The first lemma says that the “diagonal”
of a regular set is regular.

Lemma 2.2. If L is a regular language over an alphabet A, then the set
∆(L) := {µ(w,w) | w ∈ L} is a regular language over the alphabet A2 =
(A ∪ $)2 \ {($, $)}.

Proof. Given an expression of the regular language L using letters of A
together with the operations ∪,∩, ( )c, ·, ( )∗, replace every instance of a
letter a ∈ A with the letter (a, a) ∈ A2. �

Lemma 2.3. If L1, ..., Ln are regular languages over A, then their Cartesian
product L1 × · · · × Ln ⊆ (A∗)n is synchronously regular.

Proof. For each 1 ≤ i ≤ n define the monoid homomorphism ρi : A∗
n →

(A ∪ $)∗ by ρi(a1, ..., an) := ai. Then the padded extension of the product
language L := L1 × · · · ×Ln satisfies µ(L) = ∩n

i=1ρ
−1
i (Li$

∗). Since each lan-
guage Li$

∗ is regular, and regular languages are closed under homomorphic
preimage and finite intersection, then µ(L) is regular. �

A (deterministic) asynchronous (two tape) automaton over A is a finite
state automaton M = (A∪{#}, Q, q0, P, δ) satisfying: (1) The state set Q is

a disjoint union Q = Q1∪Q#
1 ∪Q2∪Q#

2 ∪{qf}∪{F} of six subsets, the initial
state q0 lies in Q1 ∪ Q2, and the set of accept states is P = {qf}. (2) The
transition function δ : Q× (A ∪ {#}) → Q satisfies δ(q, a) ∈ Q1 ∪Q2 ∪ {F}

if q ∈ Q1 ∪ Q2 and a ∈ A; δ(q, a) ∈ Q#
1 ∪ {F} if either (q ∈ Q2 and a = #)

or (q ∈ Q#
1 and a ∈ A); δ(q, a) ∈ Q#

2 ∪ {F} if either (q ∈ Q1 and a = #)

or (q ∈ Q#
2 and a ∈ A); δ(q, a) ∈ {qf , F} if q ∈ Q#

1 ∪ Q#
2 and a = #; and

δ(q, a) = F if q = F and a ∈ A ∪ {#}. As before, extend δ to a function
δ : Q × (A ∪ {#})∗ → Q recursively by δ(q, wa) := δ(δ(q, w), a).

This finite state automaton is viewed as reading from two tapes rather
than one, by the interpretation that the words on each tape are to have
an ending symbol # appended, and when the automaton M is in a state in

Qi∪Q#
i , then M will read the next symbol from tape i. Then the automaton

is in a state of Q#
i after M has finished reading the word on the other tape.
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More precisely, given a pair of words (u, v) ∈ ((A ∪ {#})∗)2, a shuffle of
(u, v) is a word u1v1 · · · ujvj ∈ (A∪{#})∗ such that each ui, vi ∈ (A∪{#})∗,
u = u1 · · · uj, and v = v1 · · · vj. Let (u, v) ∈ ((A ∪ {#})∗)2, and write
u = a1,1 · · · a1,m1

and v = a2,1 · · · a2,m2
where each ai,j ∈ A ∪ {#}. Given

a state q ∈ Q and the pair (u, v), there is a unique word σM,q(u, v) :=
c1 · · · cm1+m2

∈ (A ∪ {#, F})∗ defined recursively, such that c1 := ai,1 if

q ∈ Qi ∪ Q#
i (and 1 ≤ mi) and c1 := F if q ∈ {qf , F}, and whenever

k ≤ m1 + m2 − 1, if c1 · · · ck is a shuffle of (a1,1 · · · a1,k1
, a2,1 · · · a2,k2

) with

δ(q, c1 · · · ck) = q′, then ck+1 := ai,ki+1 if q′ ∈ Qi ∪ Q#
i (and ki < mi) and

ck+1 := F if q′ ∈ {qf , F}; and if ck = F then ck+1 := F .

A pair (u, v) ∈ (A∗)2 is accepted by the asynchronous automaton M if and
only if σM,q0

(u#, v#) is a shuffle of (u#, v#); i.e., there is no occurrence of
the letter F . (Equivalently, (u1, u2) is in the language of M if and only if the
machine M reads the next letter from the ui# tape whenever M is in a state

of Qi ∪ Q#
i , M starts in state q0, and M ends in state qf when both tapes

have been read.) A subset of A∗×A∗ is an asynchronously regular language
if it is the set of word pairs accepted by an asynchronous automaton.

Again we include a closure property for asynchronously regular languages
for later use. This result is proved by Rabin and Scott in [29, Theorem 16].

Lemma 2.4. [29] If L ⊂ (A∗)2 is an asynchronously regular language, then
the projection on the first coordinate given by the set ρ1(L) := {u | ∃(u, v) ∈
L} is a regular language over A.

3. Autostackable versus automatic: Word problems and van

Kampen diagrams

We give a definition of automatic structures for groups that is equivalent
to, but differs from, the original definition in [10], in order to illustrate more
completely the close connection to Definition 1.1 of autostackable structures
above. Both automaticity and autostackability utilize the concepts of a set
N of normal forms for a group G over a generating set A, but in contrast to
the stacking function φ for autostackability which has a finite image set, the
definition of automaticity relies on the normal form map nfN : N ×A → A∗

defined by nfN (yg, a) := yga.

Definition 3.1. A group G with finite inverse-closed generating set A is
automatic if there are a set N of normal forms for G over A and a constant
k such that the following hold:

(i) The graph of the function nfN : N × A → A∗,

graph(nfN ) := {(yg, a, yga) | g ∈ G, a ∈ A},

is a synchronously regular language.
(ii) For each g ∈ G and a ∈ A, the pair of paths in Γ labeled yg and yga

beginning at the identity vertex 1 and ending at the endpoints of eg,a
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must k-fellow travel; that is, for any natural number i, if w and w′

are the length i prefixes of the words yg and yga, then there must be
a path in Γ of length at most k between the vertices of Γ labeled by
w and w′.

In fact, the definition of automaticity given in [10, Defn. 2.3.1,Thm. 2.5.1]
requires only property (i) above; indeed, in [10, Thm. 2.3.5,Thm. 3.3.4] Ep-
stein et. al. show that the geometric property (ii) follows from the algorith-
mic property (i). Moreover, it is immediate from the properties of regular
languages discussed in Section 2.2 that the set graph(nfN ) is a synchronously
regular language if and only if the sets La := {(yg, yga) | g ∈ G} ⊂ (A∗)2

are synchronously regular for each a ∈ A ∪ {λ}, giving the equivalence of
property (i) above with the definition in [10].

Comparing Definitions 1.1 and 3.1, the automatic property (i) requires a
finite state automaton that can recognize the tuple (yg, a, z) where the third
coordinate is the normal form z = yga, but the autostackable property (1)
requires only a FSA that recognizes such a tuple in which z is a bounded
length word giving information toward eventually finding the normal form
yga. (We make this more precise below.) In analogy with the autostackable
property (2) of Definition 1.1, the automatic group property (ii) naturally
divides into degenerate and recursive cases, in that if the directed edge eg,a

is degenerate, we have the stronger property that the paths yg, yga 1-fellow
travel.

Analogous to the relationship between autostackable and stackable groups,
removing the algorithmic property (i), a group G is called combable over A if
the geometric property (ii) of Definition 3.1 holds for some set N of normal
forms and some constant k. Note that combability, and hence also auto-
maticity, imply finite presentability; in particular, the set R of all words of
length up to 2k + 2 that represent the identity are a set of defining relators
for the group.

If G is a combable group satisfying the further property that the words of
the normal form set N label simple paths in the Cayley graph Γ, for example
in the case that N is closed under taking prefixes, then the “seashell” method
discussed in Section 2.1 extends to the following procedure to construct
a van Kampen diagram (with respect to the presentation induced by the
combable structure) for any word that represents the identity of G. Given
a word w = b1 · · · bn representing the identity of G, with each bi ∈ A, let
yi := yb1···bi

for each i. Property (ii) shows that for each i there is a van

Kampen diagram ∆i labeled by yi−1biy
−1
i that is “k-thin” as illustrated in

Figure 2. Gluing these k-thin diagrams along their yi boundaries results in
a planar van Kampen diagram for w; see Figure 1. In the case that the
group is automatic, this yields a solution of the word problem. (See [10] for
full details.)
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Figure 2. “k-thin” van Kampen diagram

In [6], the first two authors of this paper show that every stackable group G
also has a finite presentation and admits a procedure for building van Kam-
pen diagrams. Moreover, in the case that the set Sφ := {(w, a, φ(eπ(w),a)) |
w ∈ A∗, a ∈ A} obtained from the stacking function φ is decidable, they
show that the procedure is an effective algorithm and the group has solv-
able word problem. In part (1) of Definition 1.1 above, however, the syn-
chronously regular (and hence recursive) set graph(φ) is a subset of Sφ,
namely graph(φ) = Sφ∩ (N ×A×A∗). We alter the stacking reduction pro-
cedure of [6] to solve the word problem for autostackable groups as follows.

For a group G with a stackable structure given by a set N of normal forms
over a inverse-closed generating set A and a stacking function φ : N ×A →
A∗, the stacking reduction algorithm on words over A is a prefix-rewriting
system given by

Rφ :={(ya, yφ(y, a)) | y ∈ N , a ∈ A, ya /∈ N ∪ A∗a−1a}

∪ {(yaa−1, y) | ya ∈ N , a ∈ A}.

Recall that starting from any word w in A∗, whenever we can decompose
w as w = ux for some rule (u, v) ∈ Rφ and word x ∈ A∗, then we can
rewrite w → vx. Each of these rewritings consists either of free reduction
or φ-reduction.

Lemma 3.2. If G is a group with inverse-closed generating set A and a
stackable structure consisting of a normal form set N and a stacking function
φ, then the prefix-rewriting system Rφ is a convergent prefix-rewriting system
for G.

Proof. Let w be any word in A∗, and write w = b1 · · · bm with each bi in
A. Suppose that w′ = c1 · · · cn, with each cj in A, is obtained from w by
repeated applications of free and φ-reductions, and that w′ → w′′ is a single
instance of another Rφ rewriting operation. If the rewriting w′ → w′′ is a
free reduction, then two letters of w′ are removed, and if this rewriting is
a φ-reduction, then a single letter of w′ is replaced by a bounded length
word. Inductively this shows that each letter of the word w′′ is the result of
successive rewritings from a specific letter bi of the original word w. Viewing
this topologically, if the rewriting operation w′ → w′′ is free reduction, then
the directed path in the Cayley graph Γ(G,A) starting at 1 and labeled
w′′ is obtained from the path labeled by w′ via the removal of two edges,
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and if the rewriting is φ-reduction, then a single edge e′ of the w′ path is
replaced by the path Φ(e′), where Φ is the flow function induced by the
stacking function φ. In the latter case, there is a specific recursive edge

ei := eπ(b1···bi−1),bi
∈ ~EN ,r for some index 1 ≤ i ≤ m on the path labeled w

from 1 in Γ such that e′ was obtained from ei via successive applications of
the flow function, and for each recursive edge e′′ along the path Φ(e′), we
have e′′ <φ e′, where <φ is the strict well-founded partial ordering given in
Definition 1.1(2r). Since at each application of the flow function a bounded
number of recursive edges are added to the path, König’s Infinity Lemma
(see, for example, [9, Lemma 8.1.2]) shows that at most finitely many Φ-
reductions can be applied starting from each of the finitely many edges of
the original path labeled w. Hence only finitely many φ-reductions can be
applied in any sequence of rewritings starting from the word w. Between
these φ-reductions, only finitely many free reductions can occur. Hence after
finitely many Rφ rewriting operations, we must obtain an irreducible word
yw, and so the prefix-rewriting system Rφ is terminating.

Now suppose that y is any irreducible word with respect to Rφ. Write
y = a1 · · · an with each ai in A and yi := a1 · · · ai for each i, and suppose
that yj is the shortest prefix of y that does not lie in N . Since the empty
word λ lies in the normal form set N of the stackable structure, we have
j ≥ 1. Now yj−1 ∈ N , and either yj−1 = yj−2a

−1
j , in which case a free

reduction rule of Rφ applies to y, or else yj−1 does not end with the letter

a−1
j , in which case a φ-reduction rule applies to y. However, this contradicts

the irreducibility of y. Therefore every prefix of the word y, including the
word y itself, must lie in N . Thus the set of irreducible words with respect
to Rφ is contained in the set N of normal forms for G.

Next suppose that w is any word in the normal form set N . By the
termination proof above, there is a finite sequence of rewritings from w to
an irreducible word yw. Since every pair of words in the prefix-rewriting
system Rφ represents the same element of the group G, then w =G yw. By
the previous paragraph, the irreducible word yw must lie in N . But since
each element of G has exactly one representative in N , this implies that
w = yw. Hence the set N of normal forms for the stackable structure is
equal to the set of irreducible words with respect to the prefix-rewriting
system Rφ. Note that this shows both that the set N is prefix-closed, and
that the set of Rφ-irreducible words are a set of normal forms. Hence Rφ is
convergent.

Finally, since A is a monoid generating set for G, and the rules of Rφ

define relations of G that give a set of normal forms for G, the convergent
prefix-rewriting system Rφ gives a monoid presentation of G. �

Recall that the normal form of the identity element in an autostackable
group must be the empty word. Decidability of the set graph(φ) implies
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that for any word w ∈ A∗, one can determine whether or not a φ-reduction
applies, and so Lemma 3.2 completes the word problem solution in that case.

Another immediate consequence of Lemma 3.2 is that the stacking pre-
sentation

G = 〈A | {φ(yg, a)a−1 | g ∈ G, a ∈ A}〉

is a (group) presentation for the stackable group G. Property (2) of the
definition of stackable implies that this presentation is finite. Hence we have
the following.

Proposition 3.3. Autostackable groups are finitely presented and have solv-
able word problem.

In [6, Proposition 1.12], the first two authors of this paper show how to
use computability of the set Sφ to obtain an inductive algorithm for con-
structing van Kampen diagrams over this presentation. A similar alteration
of the proof shows that this algorithm applies in the case that graph(φ)
is recursive. However, in [6, Proposition 1.12], another hypothesis was in-
cluded, that the generating set A of the stackable structure did not include
a letter representing the identity element of the group. We note that given
any autostackable structure for a group G, with inverse-closed generating
set A, normal forms N , and stacking function φ, if A′ ⊂ A is the set of
letters in A representing 1, then since the normal form set is prefix-closed,
no element of N can contain a letter from A′. It can then be shown that G
is also autostackable over the inverse-closed generating set B := A\A′, with
the same normal form set N , and the stacking function φ′ : N × B → B∗

given by setting φ′(y, b) equal to the word φ(y, b) with all instances of letters
in A′ removed.

We include a few more details of this inductive algorithm here to illustrate
the difference between the van Kampen diagrams built from an autostack-
able structure and those built from a prefix-closed automatic structure. For
an autostackable group, since the set of normal forms is prefix-closed, each
normal form word must label a simple path in the Cayley graph Γ, and as
in the case of automatic groups, we extend the “seashell” method described
in Section 2.1 to a diagram-building algorithm. Given a word w = b1 · · · bn

with each bi ∈ A and such that π(w) = 1, and letting yi := yb1···bi
for each

i, this method requires an algorithm for building van Kampen diagrams ∆i

for the words yi−1biy
−1
i , which then can be glued as in Figure 1 to obtain

the diagram for w. However, in this case the van Kampen diagram ∆i will
not be “thin” in general, but instead is built by recursion using property
(2) of Definition 1.1. If the directed edge eyi−1,bi

of Γ is degenerate, then
the van Kampen diagram ∆i is homeomorphic to a line segment, contain-
ing no 2-cells; this is pictured in Figure 3. On the other hand, if the edge
eyi−1,bi

is recursive, and we write φ(yi−1, bi) = a1 · · · am with each aj ∈ A,
then by Noetherian induction (using the well-founded strict partial order-
ing <φ) we may assume that for each 1 ≤ j ≤ m we have already built
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Figure 3. Degenerate van Kampen diagrams
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Figure 4. Recursive van Kampen diagram

a van Kampen diagram ∆′
j for the word y′j−1ajy

′−1
j , where y′j denotes the

normal form word representing the element yi−1a1 · · · aj for each j. Suc-
cessively gluing these diagrams ∆′

j, or stacking them, along their common

(simple) boundary paths y′j, we obtain a planar diagram with boundary word

yi−1φ(yi−1, bi)y
−1
i . Finally, glue on a single 2-cell whose boundary is labeled

by the word φ(yi−1, bi)
−1bi to obtain the required van Kampen diagram ∆i.

This process is illustrated in Figure 4.

4. Asynchronously automatic groups

A group G with finite inverse-closed generating set A is asynchronously
automatic if there is a regular language N = {yg | g ∈ G} of normal forms
for G over A such that for each a ∈ A the subset

La := {(yg, yga) | g ∈ G}

of A∗ × A∗ is an asynchronously regular language. Every automatic group
is also asynchronously automatic. This section is devoted to the proof of
Theorem 4.1.

Theorem 4.1. Every group that has an asynchronously automatic structure
with a prefix-closed normal form set is autostackable.

Proof. Let G be an asynchronously automatic group with finite inverse-
closed generating set A and prefix-closed normal form set N , and for each
a ∈ A let Ma = (A ∪ {#}, Qa, q0, Pa, δa) be an asynchronous automaton
accepting the language La. By [10, Theorem 7.2.4], we may also assume
that the asynchronously automatic structure is bounded. That is, there is a
constant C such that for each pair (u, v) ∈ La, the shuffle σMa,q0

(u#, v#)
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(see Section 2.2 for the definition of this notation) of the pair (u#, v#) has
the form σMa,q0

(u, v) = u1v1 · · · umvm where u = u1 · · · um, v = v1 · · · vm,
each ui, vi ∈ (A ∪ {#})∗, and the lengths of these subwords satisfy 0 ≤
l(u1) ≤ C, 1 ≤ l(ui) ≤ C for all 2 ≤ i ≤ m, 1 ≤ l(vi) ≤ C for all
1 ≤ i ≤ m − 1, and 0 ≤ l(vm) ≤ C.

By increasing this constant if necessary, we may also assume that C is
greater than 3 and greater than the cardinality |Qa| of the set of states of
the automaton Ma for every a ∈ A. We can view Ma as a finite graph with
vertex set Qa and a directed edge labeled b ∈ A∪{#} from q̂ to q̃ whenever

δa(q̂, b) = q̃. Let Qgood
a be the set of all states q in Qa,1∪Qa,2 such that there

is a path in Ma from the initial state q0 to q and there also is a path in Ma

from q to the accept state qf . For each q ∈ Qgood
a , by eliminating repetition

of vertices along the path to qf , there must also be a directed edge path in
Ma from q to qf of length less than C. Let Wq ∈ (A ∪ {#})∗ be a fixed
choice of such a word, for each such q. Note that this word must contain
two instances of the letter #, and we can write Wq = σMa,q(pq#, rq#) for
two words pq, rq ∈ A∗ satisfying l(pq) + l(rq) ≤ C − 2.

To define the function φ : N×A → A∗, we first set φ(yg, a) := a whenever

the edge eg,a lies in the set ~Ed = ~EN ,d of degenerate edges of the Cayley
graph Γ(G,A) with respect to the set N of normal forms; i.e. whenever either
yga = yga or ygaa

−1 = yg, as required for property (2d) of Definition 1.1.
Now suppose that eg,a is recursive. If l(yg) + l(yga) ≤ C2 + 3C, then define
φ(yg, a) := y−1

g yga.

On the other hand, suppose that l(yg) + l(yga) > C2 + 3C. The pair
(yg, yga) is accepted by the asynchronous automaton Ma, and so the word
w := σMa,q0

(yg#, yga#) is a shuffle of (yg#, yga#) and satisfies δa(q0, w) =
qf , the accept state of Ma. The bounded property above implies that
l(yga#) ≤ Cl(yg#), and so l(yg#) + Cl(yg#) > C2 + 3C + 2, which gives
l(yg) > C + 1. Write w = w′w′′ where w′′ is the shortest suffix of w
containing exactly C + 1 letters from yg (i.e., C + 2 letters from yg#).
Applying the bounded property again shows that w′ = σMa,q0

(u, v) and

w′′ = σMa,q(s#, t#) where q = δa(q0, w
′) ∈ Qgood

a , u, v, s, t ∈ A∗, us = yg,
vt = yga, l(s) = C + 1, and 1 ≤ l(t#) ≤ C2 + 2C. Returning to the view of
Ma as a finite graph, the word w′ labels a path from q0 to q and w′′ labels a
path from q to qf . Thus the word w̃ := w′Wq also labels a path from q0 to
qf , and so the pair (upq, vrq) lies in the language La. Note that usa =G vt
and upqa =G vrq, and so s−1pqar−1

q t =G a. Moreover, the pair (s, t) and
the state q are uniquely determined by (yg, yga); i.e., by g and a. In this
case we define φ(yg, a) := s−1pqar−1

q t.

With this definition of the stacking function φ, the length of the word
φ(yg, a) is at most C2 + 4C − 1 for all g ∈ G and a ∈ A, and in each case
φ(yg, a) =G a.
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Now suppose that e = eg,a and e′ = eg′,a′ are recursive edges such that
e′ lies on the directed path in the Cayley graph Γ starting at the vertex
g and labeled by the word φ(yg, a). Now when l(yg) + l(yga) ≤ C2 + 3C
the path φ(yg, a) = y−1

g yga follows only degenerate edges, so we must have

l(yg) + l(yga) > C2 + 3C. In this case, the path starting at g and labeled
by the word φ(yg, a) := s−1pqar−1

q t defined above follows only degenerate

edges along the subpaths labeled by s−1pq and r−1
q t, since us = yg, vt = yga,

and (upq, vrq) ∈ La, and so the words vrq, vt ∈ N as well. So the edge e′

must be the edge labeled a′ = a with initial vertex g′ =G gs−1pq =G upq.
That is, we have normal forms yg = us with l(s) = C + 1 and yg′ = upq

with l(pq) ≤ C, and so the normal form to the initial vertex of e′ is strictly
shorter than the normal form to the initial vertex of e. Hence the relation
<φ defined in property (2r) of Definition 1.1 strictly increases the length of
the normal form of the initial vertex of the edges, and so is a well-founded
strict partial ordering. Therefore G is stackable over A.

By hypothesis the normal form set N is a regular language, and so for each
a ∈ A, an application of Lemma 2.1 shows that the language Ja := {y | ya ∈
N} is regular. Lemma 2.3 then shows that the languages Ja×{a}×{a} and
(N ∩A∗a−1)×{a}×{a} are synchronously regular. The finite union of these
sets for a ∈ A is the subset of graph(φ) corresponding to the application of
φ to degenerate edges, and therefore this set is synchronously regular.

The subset

Lsmallrec := {(yg, a, φ(yg, a)) | g ∈ G, a ∈ A, eg,a ∈ ~Er and l(yg)+l(yga) ≤ C2+3C}

of graph(φ) is finite, and therefore also is synchronously regular. For use in
avoiding overlapping sets later, denote Ja,smallrec := {yg | (yg, a, φ(yg, a)) ∈
Lsmallrec}.

For each a ∈ A and q ∈ Qgood
a , let

Ka,q := {(u, v) | u, v ∈ A∗, δa(q0, σMa,q0
(u, v)) = q},

and note that by definition of Qgood
a the set Ka,q is nonempty. This sub-

set of A∗ × A∗ is asynchronously regular; in particular, if q ∈ Qa,1, then

Ka,q is the accepted language of the asynchronous automaton M̃ = (A ∪

{#}, Q̃, q0, Pa, δ̃) where Q̃1 = Qa,1, Q̃2 = Qa,2, Q̃#
1 = ∅, Q̃#

2 = {q̃}, and

δ̃(q′, b) = δ(q′, b) for all q′ ∈ Q̃a,1∪ Q̃a,2 and b ∈ A, δ̃(q,#) = q̃, δ̃(q̃,#) = qf ,

and δ̃(q′, b) = F otherwise. The case that q ∈ Qa,2 is similar. Then
Lemma 2.4 shows that the set ρ1(Ka,q) = {u | ∃(u, v) ∈ Ka,q} is a regu-
lar language.

Let

Sa,q := {(s, t) | s, t ∈ A∗, l(s) = C + 1, and δ(q, σMa,q(s#, t#)) = qf}.

The boundedness of the asynchronously automatic structure implies that
l(t) < C2+2C, and the set Sa,q is finite. Moreover, note that if (s, t), (s, t′) ∈
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Sa,q, then if we let (u, v) be an element of the nonempty set Ka,q, we have
(us, vt), (us, vt′) ∈ La, and so vt, vt′ are both normal form words represent-
ing the same element π(usa) of G; hence t = t′. Thus for each s ∈ AC+1,
there is at most one word tq,s such that the pair (s, tq,s) ∈ Sa,q.

Next for each a ∈ A, q ∈ Qgood
a , and (s, t) ∈ Sa,q, let

La,q,s := ρ1(Ka,q)s ∩ [A∗ \ (Ja ∪ (N ∩ A∗a−1) ∪ Ja,smallrec)].

This is the set of words us ∈ A∗s such that us ∈ N , the edge eπ(us),a is

recursive, l(us) + l(yusa) > C2 + 3C, and the path labeled σMa,q0
(us, yusa)

goes from q0 through q to qf in Ma. Closure properties of regular sets shows
that this language is regular. Applying Lemma 2.3 again, the language
La,q,s ×{a}×{s−1pqar−1

q tq,s} is a synchronously regular subset of graph(φ)
corresponding to these recursive edges.

We can now write the graph of the stacking function φ as the finite union

graph(φ) = [∪a∈A(Ja ∪ (N ∩ A∗a−1)) × {a} × {a})]

∪ Lsmallrec

∪ [∪
a∈A,q∈Q

good
a ,(s,tq,s)∈Sa,q

(La,q,s × {a} × {s−1pqar−1
q tq,s})].

Closure of the class of synchronously regular sets under finite unions then
shows that graph(φ) is synchronously regular. Thus G is autostackable. �

5. Rewriting systems

In this section we prove the characterization of autostackable groups in
terms of synchronously regular bounded convergent prefix-rewriting systems,
and conclude with a discussion of finite convergent rewriting systems. We
begin by discussing a process for minimizing prefix-rewriting systems.

Definition 5.1. A convergent prefix-rewriting system R ⊂ A∗ × A∗ for a
group G is processed if:

(a) For each a ∈ A there is a letter in A, which we denote a−1, such
that π(a)−1 = π(a−1) (where π : A∗ → G is the canonical map).

(b) For each pair (u, v) ∈ R, every proper prefix of u is irreducible with
respect to the rewriting operations of R.

(c) Whenever (u, v1), (u, v2) ∈ R, then v1 = v2.

For any prefix-rewriting system R over A, let Irr(R) denote the set of
irreducible words with respect to the rewriting operations ux → vx whenever
(u, v) ∈ R and x ∈ A∗. Note that every prefix of a word in Irr(R) must also
lie in Irr(R).

Proposition 5.2. If a group G admits a synchronously regular bounded
convergent prefix-rewriting system R over a monoid generating set B, then
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G also admits a processed synchronously regular bounded convergent prefix-
rewriting system Q over the generating set A := B ∪ B−1, such that Irr(R)
= Irr(Q).

Proof. Let R be a bounded convergent prefix-rewriting system over B for
G, and let π : B∗ → G be the associated surjective monoid homomorphism.
For each element b ∈ B, let the symbol b−1 denote another letter, and let
A := B ∪ {b−1 | b ∈ B}. For each b ∈ B, let zb denote the unique word in
Irr(R) representing the element π(b−1) of G.

Let

R′ := {(yb, v) | (yb, v) ∈ R, y ∈ Irr(R), b ∈ B};

i.e., the set of all rules of R whose left entry has every proper prefix irre-
ducible; i.e., that satisfies property (b) of Definition 5.1.

Let k be the constant associated to the bounded property of the prefix-
rewriting system R. Then by expressing the finite set

W := {(s, t) ∈ B≤k × B≤k | the first letters of s and t are distinct},

as W = {(s1, t1), ..., (sn, tn)}, we can write each element r := (u, v) of R in
the form r = (wsi(r), wti(r)) for a unique index i(r) ∈ {1, ..., n} and word
w ∈ B∗. For each 1 ≤ i ≤ n, let

R′
i := {r ∈ R′ | i(r) = i}.

Then R′ is the disjoint union R′ = ∪n
i=1R

′
i. Note that if there are two pairs

r1 = (u, v1), r2 = (u, v2) ∈ R′ that have the same left hand entry but v1 6= v2

on the right, then the indices i(r1) 6= i(r2) must also be distinct. Let

Q′ := {r = (u, v) ∈ R′ |6 ∃r̃ = (u, ṽ) ∈ R′ with i(r̃) < i(r)}.

That is, the subset Q′ of R satisfies properties (b) and (c) of Definition 5.1.
We then define the prefix-rewriting system Q := Q′ ∪ Q′′ where

Q′′ := {(yb−1, yzb) | y ∈ Irr(R) \ B∗b} ∪ {(ybb−1, y) | yb ∈ Irr(R), b ∈ B}.

Suppose that w ∈ A∗ is rewritten by a sequence of applications of rewrit-
ing operations using the prefix-rewriting system Q. Since the only occur-
rences of letters of B−1 in Q appear in left hand sides of pairs in Q′′, at
most l(w) of the rewritings in this sequence involve a rule of Q′′. The rules
in Q′ all lie in the convergent prefix-rewriting system R, which satisfies the
termination property, and so only finite sequences of applications of Q′ rules
can occur. Hence there can be at most finitely many rewritings in any such
rewriting of w; that is, the prefix-rewriting system Q is terminating.

Suppose that w is any word in Irr(R). Then w ∈ B∗, so w can’t be
rewritten using a pair from Q′′, and since Q′ ⊆ R, the word w also can’t be
reduced using Q′. Hence Irr(R) ⊆ Irr(Q).

On the other hand, suppose that x is a word in Irr(Q) \ Irr(R). If x ∈ B∗,
then write x = x′bx′′ where x′ ∈ B∗, b ∈ B, and x′b is the shortest prefix
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of x that does not lie in Irr(R). But then there must be a pair (u, v) ∈ R
and a word z ∈ B∗ such that x′b = uz. Since x′ is irreducible over R, then
x′b = u and z = λ, and the rule (u, v) also lies in the subset R′ of R. Hence
there also is a rule (u, v′) in the subset Q′ of Q, since the sets of left hand
sides of rules of R′ and Q′ are the same. But then x is reducible over Q.
This contradiction implies that B∗∩ Irr(Q) ⊆ Irr(R), and so we must have
x /∈ B∗. In this case we can write x = x′ax′′ with a ∈ B−1 and x′ ∈ B∗,
where a is the first occurrence of a letter of A \ B in x. Since the set of
irreducible words over a prefix-rewriting system is prefix-closed, the word
x′ lies in Irr(Q) ∩B∗, and hence also in Irr(R). But then the word x can
be reduced using an element of Q′′, another contradiction. Therefore we
have Irr(R) = Irr(Q). Since the set Irr(R) is a set of normal forms for the
group G, and whenever (u, v) ∈ Q we have u =G v, this shows that Q is a
convergent prefix-rewriting system for the group G.

Since the convergent prefix-rewriting system R is bounded with constant
k, the rules of the prefix-rewriting system Q are also bounded, with constant
given by the maximum of k, 2, and max{l(zb) | b ∈ B}.

Note that the prefix-rewriting system Q has been chosen to satisfy prop-
erties (a), (b), and (c) of the Definition 5.1, and so Q is a processed bounded
convergent prefix-rewriting system.

If moreover the set R is also synchronously regular, then the padded
extension set µ(R) = {µ(u, v) | (u, v) ∈ R} is a regular language over
the alphabet B2 = (B ∪ $)2 \ {($, $)}. Define the monoid homomorphism
ρ1 : B∗

2 → B∗ by ρ((b1, b2)) := b1 if b1 ∈ B and ρ((b1, b2)) := λ if b1 = $. The
set Irr(R) is the language Irr(R) = A∗\(ρ1(µ(R))A∗); using closure of regular
languages under homomorphic image, concatenation, and complement (see
Section 2.2 for more on regular languages), then Irr(R) is a regular set over
the alphabet B. But then Irr(R) is also regular over any alphabet containing
B, including A.

For each b ∈ B, Lemma 2.1 says that the set Lb := {y | yb ∈Irr(R)} also is
regular. Also recall from Lemma 2.2 that whenever L is a regular language
over B, then the diagonal set ∆(L) := {µ(y, y) | y ∈ L} is a regular language
over B2. Now the padded extension of the subset Q′′ of the prefix-rewriting
system Q has the decomposition

µ(Q′′) = ∪b∈B [(∆(Irr(R) \ B∗b) · µ(b−1, zb)) ∪ (∆(Lb) · µ(bb−1, λ))].

Again applying closure properties (in particular under finite unions) of reg-
ular languages, this shows that Q′′ is synchronously regular.

Analyzing the subset Q′ of Q requires a few more steps. First we note
that the padded extension of the set of rules in R satisfying property (b) in
Definition 5.1 is µ(R′) = µ(R) ∩ ρ−1

1 (Irr(R) · B), and so µ(R′) is a regular
set.
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Next for each 1 ≤ i ≤ n (where n = |W |), let Li := ρ1(µ(R′) ∩ (∆(B∗) ·
µ(si, ti))) be the set of left hand entries of all of the rules r in R′

i. Again
closure properties show that Li is a regular language over B. Then the set

L′
i := Li \ (∪i−1

j=1Lj)

is the set of all left hand entries of elements q in Q′ such that the index
i(q) = i. Now Lemma 2.1 shows that the set L′′

i := {y | ysi ∈ L′
i} is regular.

Putting all of these together, the padded extension of the set Q′ has the
decomposition

µ(Q′) = ∪n
i=1∆(L′′

i ) · µ(si, ti).

Thus µ(Q′) is a regular language over the alphabet B2, and hence also over
the set A2. Hence Q′ also is synchronously regular.

Finally the closure of synchronously regular sets under finite unions shows
that the bounded convergent prefix-rewriting system Q is synchronously
regular, as required. �

Note that whenever R is a processed convergent prefix-rewriting system
over an alphabet A and w ∈ A∗ is a reducible word, then there exists exactly
one rewriting operation (of the form w = ux → vx for some (u, v) ∈ R) that
can be applied to w. Hence for each w ∈ A∗, we can define the prefix-
rewriting length prlR(w) to be the number of rewriting operations required
to rewrite w to its normal form via R.

Theorem 5.3. Let G be a finitely generated group.
(1) The group G is stackable if and only if G admits a bounded convergent
prefix-rewriting system.
(2) The group G is autostackable if and only if G admits a synchronously
regular bounded convergent prefix-rewriting system.

Proof. Suppose first that the group G is stackable over an inverse-closed
generating set A, with normal form set N , constant k, and stacking function
φ : N × A → A∗ such that the length of φ(y, a) is at most k for all (y, a) ∈
N × A. In Lemma 3.2, we show that

Rφ :={(ya, yφ(y, a)) | y ∈ N , a ∈ A, ya /∈ N ∪ A∗a−1a}

∪ {(yaa−1, y) | ya ∈ N , a ∈ A}.

is a convergent prefix-rewriting system for the group G. (Moreover, the
irreducible words are the normal forms from the stackable structure; i.e.,
Irr(Rφ) = N .) The bound k on lengths of words in the image of φ implies
that Rφ is a bounded convergent prefix-rewriting system.

If moreover G is autostackable, so that the set graph(φ) is synchronously
regular, let µ(graph(φ)) := {µ(yg, a, φ(yg , a)) | g ∈ G, a ∈ A} be the regular
language of padded words over A3 = (A ∪ $)3 \ {($, $, $)} associated to the
elements of the set graph(φ). Define the monoid homomorphism ρ1 : A∗

3 →
A∗ by ρ1((a1, a2, a3)) := a1 if a1 ∈ A and ρ1((a1, a2, a3)) := λ if a1 = $, and
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the monoid homomorphism ρ2,3 : A∗
3 → ((A ∪ $)2)∗ by ρ2,3((a1, a2, a3)) :=

(a2, a3), for each (a1, a2, a3) ∈ A3. The normal form set Irr(Rφ) = N =
ρ1(µ(graph(φ))) is the image of a regular set, and so is regular. For each
a ∈ A, the set Ja := {y ∈ A∗ | ya ∈ N} is regular, applying Lemma 2.1.
Also with this notation, for each a ∈ A and u ∈ A≤k we can write the set
La,u of all normal form words y ∈ N such that the stacking function φ maps
(y, a) to the word u as

La,u := ρ1(µ(graph(φ)) ∩ ρ−1
2,3(µ(a, u) · ($, $)∗)).

Recalling the fact that the class of regular languages is closed under finite
intersections and homomorphic image and preimage, then since the language
µ(a, u)·($, $)∗ over (A∪$)2 is regular, the set La,u is regular. Using the nota-
tion ∆(L) = {µ(w,w) | w ∈ L} for any language L, we can now decompose
the padded extension of the prefix-rewriting system as

Rφ = [∪a∈A,u∈A≤k,a6=u∆(La,u) · µ(a, u)] ∪ [∪a∈A∆(Ja) · µ(aa−1, $)].

From Lemma 2.2, the languages ∆(La,u) and ∆(Ja) over (A∪$)2 are regular.
Since singleton sets are regular, and the class of regular languages is also
closed under concatenation and finite unions, this decomposition shows that
the set µ(graph(φ)) is regular. Therefore Rφ is a synchronously regular
bounded convergent prefix-rewriting system for the autostackable group G.

Conversely, suppose that the group G admits a bounded convergent prefix-
rewriting system. From the proof of Proposition 5.2, there exists a processed
bounded convergent prefix-rewriting system R, over an inverse-closed alpha-
bet A, for the group G. Let k be the constant associated to the bounded
property of this prefix-rewriting system. Let N be the set Irr(R) of words
that are irreducible with respect to the rewriting operations ux → vx when-
ever (u, v) ∈ R and x ∈ A∗. Since the prefix-rewriting system is convergent,
then N is a set of normal forms for G. Note that the empty word and any
prefix of an irreducible word are irreducible, and so N is a prefix-closed
language of normal forms for G over A that contains the empty word.

Define the function φ : N×A → A∗ as follows. For each y ∈ N and a ∈ A,
define φ(y, a) := a if either ya ∈ N or y ∈ A∗a−1, as required for property
(2d) of Definition 1.1. If neither of these conditions hold, then the word ya
is reducible. Since the maximal prefix y is irreducible, any rule of the prefix-
rewriting system that applies to the word ya must have the entire word ya
as its left entry. Because this prefix-rewriting system is processed, there is
exactly one element of R of the form (ya, v) for some v ∈ A∗. Moreover,
there are words s, t ∈ A≤k and w ∈ X∗ such that ya = wsa, v = wt, and (by
taking w to be as long as possible) the words s and t do not start with the
same letter. In this case we define φ(y, a) := s−1t, where s−1 is the formal
inverse of s in A∗. For every y ∈ N and a ∈ A, then, the length of the word
φ(y, a) is at most 2k, and since wsa =G wt in the rewriting presentation of
G, we have φ(y, a) =G a.
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Let Γ be the Cayley graph for the group G with generating set A, and let
~Er = ~EN ,r denote the set of recursive edges with respect to the normal form
set N . Given any directed edge eg,a of the Cayley graph Γ(G,A) with g ∈ G
and a ∈ A, let prlR(eg,a) := prl(yga) denote the prefix-rewriting length over
R of the associated word yga, where yg is the irreducible normal form for g.

Suppose that eg,a is any edge in ~Er, and that e′ is an edge on the directed
path in Γ labeled by the word φ(yg, a) and starting at the vertex g. Then
the word yga is not in normal form, and there is a rule yga = wsa → wt
in the prefix-rewriting system R such that φ(yg, a) = s−1t. Since the word
yg is in normal form, the prefix s−1 of the word φ(yg, a) labels a path in Γ
starting at the vertex g that follows only degenerate edges, in the maximal
tree defined by the normal form set N . Writing the word t = b1 · · · bn

with each bi in A, then e′ = egs−1b1···bi−1,bi
= ewb1···bi−1,bi

for some i. Now
the sequence of rewriting operations with respect to the prefix-rewriting
system R of the word yga has the form yga = wsa → wt = wb1 · · · bn →∗

ygs−1b1···bi−1
bi · · · bn →∗ yga, where →∗ denotes a finite number (possibly

0) of applications of rewriting rules, since no rewriting operation over the
processed prefix-rewriting system R can be applied affecting the letter bi

in these words until the prefix to the left of that letter has been rewritten
into its irreducible normal form. Hence the number of rewritings needed
to obtain an irreducible word starting from the word yga is strictly greater
than the number required to obtain a normal form starting from the word
ygs−1b1···bi−1

bi. That is, prlR(e′) < prlR(e). Then the usual strict well-
founded partial ordering on the natural numbers implies that the relation
<φ of property (2r) in Definition 1.1 is a strict well-founded partial ordering.
Hence property (2) of the Definition 1.1 of autostackable holds, and so the
group G is stackable.

If moreover G has a bounded convergent prefix-rewriting system that is
synchronously regular, then Proposition 5.2 says that there is a processed
synchronously regular bounded convergent prefix-rewriting system R over a
inverse-closed generating set A for the group G. Synchronous regularity of
R means that the set µ(R) = {µ(u, v) | (u, v) ∈ R} of padded words is a
regular language over the set A2 = (A ∪ $)2 \ {($, $)}. Let ρ1 : A∗

2 → A∗

be the monoid homomorphism defined by ρ1(a1, a2) := a1 if a1 ∈ A and
ρ1(a1, a2) := λ if a1 = $. The set N of irreducible words with respect to R
can then be written as

N = A∗ \ (ρ1(µ(R))A∗),

and so N is a regular language.

For each a ∈ A, an application of Lemma 2.1 shows that the language
La := {y | ya ∈ N} is regular. Lemma 2.3 then shows that the languages
La×{a}×{a} and (N ∩A∗a−1)×{a}×{a} are synchronously regular. Thus
the subset of graph(φ) corresponding to the application of φ to degenerate
edges is synchronously regular.
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Given a ∈ A, let Wa be the finite set of all pairs (s, t) such that s, t ∈ A≤k,
s and t begin with different letters of A, and s does not end with the letter
a−1. Let ∆(A∗) := {(w,w) | w ∈ A∗}; by Lemma 2.2, this language over A2

is regular. For each (s, t) ∈ Wa, let

Pa,s,t := ρ1(µ(R) ∩ (∆(A∗) · µ(sa, t))),

which is again regular using the closure properties of regular languages.
Then the set of all words w such that the rule (wsa,wt) lies in R is

La,s,t := {w | wsa ∈ Pa,s,t},

which is also regular (by Lemma 2.1). Applying Lemma 2.3 once more shows
that the subset (La,s,t ·s)×{a}×{s−1t} of graph(φ) corresponding to these
recursive edges is also synchronously regular.

We can now write the graph of the stacking function φ as

graph(φ) = ∪a∈A[(La × {a} × {a}) ∪ ((N ∩ A∗a−1) × {a} × {a})]

∪a∈A,(s,t)∈Wa
(La,s,t · s) × {a} × {s−1t}.

Closure of the class of synchronously regular languages under finite unions
then implies that graph(φ) is synchronously regular. Hence property (1) of
Definition 1.1 of autostackability also holds in this case. �

Rewriting systems that are not “prefix-sensitive”, allowing rewriting rules
to be applied anywhere in a word, have been considerably more widely
studied and applied in the literature than prefix-rewriting systems. A finite
convergent rewriting system for a group G consists of a finite set A together
with a finite subset R ⊆ A∗ × A∗ such that as a monoid, G is presented by
G = Mon〈A | u = v whenever u → v ∈ R〉, and the rewritings xuz → xvz
for all x, z ∈ A∗ and (u, v) in R satisfy:

• Normal forms: Each g ∈ G is represented by exactly one irreducible
word (i.e. word that cannot be rewritten) over A.

• Termination: There does not exist an infinite sequence of rewritings
x → x1 → x2 → · · · .

The key difference here is that a rewriting system allows rewritings xuz →
xvz for all x, z ∈ A∗ and (u, v) ∈ R, but a prefix-rewriting system only
allows rewritings uz → vz for all z ∈ A∗ and (u, v) ∈ R. However, every
finite convergent rewriting system gives rise to a bounded convergent prefix-
rewriting system, yielding the following.

Corollary 5.4. Every group that admits a finite complete rewriting system
is autostackable.

Proof. Given a finite convergent rewriting system R for a group G over a
generating set A, the prefix-rewriting system over A defined by

R̂ := {(wu,wv) | (u, v) ∈ R,w ∈ A∗}
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allows exactly the same rewriting operations as the original finite conver-
gent rewriting system, and therefore is a convergent prefix-rewriting system.
Since the set R is finite, this prefix-rewriting system R̂ is also bounded. Fi-
nally, the padded extension of the set R̂ can be written as µ(R̂) = ∪(u,v)∈R∆(A∗)·
µ(u, v), and so this set is synchronously regular. Theorem 5.3(2) now com-
pletes the proof. �
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