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Abstract

We construct finite complete rewriting systems for two large classes of Artin groups:

those of finite type, and those whose defining graphs are based on trees. The construc-

tions in the two cases are quite different; while the construction for Artin groups of finite

type uses normal forms introduced through work on complex hyperplane arrangements,

the rewriting systems for Artin groups based on trees are constructed via three-manifold

topology. This construction naturally leads to the question: Which Artin groups are

three-manifold groups? Although we do not have a complete solution, the answer, it

seems, is “not many.”

1. Introduction

Let G be a finite simplicial graph with edges labeled by integers greater

than one. Associated to G, which we call the defining graph, is an infinite group

AG, whose presentation has generators corresponding to the vertices of G, and

relations

aba · · ·︸ ︷︷ ︸
n letters

= bab · · ·︸ ︷︷ ︸
n letters

where {a, b} is an edge of G labeled n. Such groups are Artin groups; typical

examples are the braid groups and the fundamental groups of (2, n)-torus link

complements. While it is relatively simple to define Artin groups, they are cer-

tainly not simple to work with. Basic questions, such as the word problem, are
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still open for arbitrary Artin groups, although there are certain classes of Artin

groups where the word problem has been solved.

Given any Artin group AG there is an associated Coxeter group CG which

is the quotient of AG formed by adding the relations v2 = 1 for each generator

v. An Artin group is of finite type if its associated Coxeter group is finite. Braid

groups are Artin groups of finite type; their associated Coxeter groups are the

symmetric groups. Thurston proved that braid groups are biautomatic (§9 in

[13]), and Charney extended this result to all Artin groups of finite type [7].

Other special classes of Artin groups are known to be automatic or biauto-

matic. Graph groups (Artin groups where all the edge labels = 2) were shown

to be biautomatic in [31] and independently in [18]. On the other end of the

spectrum, Peifer has shown that Artin groups of extra-large type (all edge labels

> 3) are biautomatic [25], and triangle free Artin groups (G does not contain a

complete graph on three vertices) are known to admit automatic structures ([26]

with [15]).

In this paper we present finite complete rewriting systems for two classes of

Artin groups. In addition to solving the word problem, finite complete rewriting

systems provide an extremely useful mechanism for converting any word in the

generators into a canonical normal form.

Theorem 1. If AG is an Artin group of finite type, then AG has a geodesic finite

complete rewriting system.

In [24] Pedersen and Yoder have independently developed (non-geodesic)

finite complete rewriting systems for braid groups, using a different presentation

for these groups.

Theorem 2. If AG is an Artin group with defining graph G a tree, then AG has

a finite complete rewriting system.

The only other class of Artin groups which is known to admit finite complete

rewriting systems are graph groups ([31] and [18]). In [18] it was shown that the

class of groups admitting finite complete rewriting systems is closed under graph

products. Since the graph product of Artin groups is an Artin group, there are

now a large number of Artin groups which are known to admit finite complete

rewriting systems. In particular, all Artin groups which can be formed by taking

free and direct products of Artin groups of finite type, graph groups, and Artin

groups based on trees, admit finite complete rewriting systems.

It is interesting to note that both of the classes we consider in this paper

arise as fundamental groups of manifolds; those of finite type correspond to cer-

tain complex manifolds formed by taking hyperplane complements [11], and those
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based on trees are the fundamental groups of certain link complements [6]. This

‘manifoldness’ expresses itself in the proofs of Theorems 1 and 2. The proof

of Theorem 1 uses normal forms introduced in [3], which are closely connected

with the geometry of complex hyperplane complements, while the proof of The-

orem 2 uses the fact that these Artin groups are the fundamental groups of link

complements which fiber over the circle.

The connection between three-manifolds, Artin groups, and rewriting sys-

tems is intriguing because of recent work on rewriting systems and three-manifold

groups. For example, in [19] it is shown that if M is a closed P 2-irreducible three-

manifold with infinite fundamental group, and if π1(M) admits a finite complete

rewriting system, then M̃ is homeomorphic to IR3; finite complete rewriting sys-

tems for many manifolds admitting one of Thurston’s eight geometries are pre-

sented in [20]. Regrettably, it seems that this connection cannot be pushed much

beyond the Artin groups based on trees. In particular, we suspect that the only

Artin groups which are fundamental groups of compact three-manifolds are those

which split as a free product, each factor being ZZ3 or having a defining graph

a tree. In the final section we give good evidence for this belief by extending an

argument of Droms that completely classifies which graph groups are the funda-

mental groups of compact three-manifolds [12], to all even Artin groups.

Theorem 3. If G is an even labeled graph, then the Artin group AG is the funda-

mental group of a compact three-manifold if and only if each connected component

of G is a tree or a triangle with all edges labeled two.

We emphasize that by “three-manifold group” we mean “the fundamental

group of a compact three-manifold”; in particular we are not restricting ourselves

to the smaller class of closed (that is, compact without boundary) three-manifolds.

The question of how to construct rewriting systems for finite type Artin

groups was suggested to the first author by Hermann Servatius who also pointed

out the work of Brieskorn and Saito. We thank Mark Brittenham for helpful

comments about the topology of three-manifolds.

2. Background on Rewriting Systems

A rewriting system for a group G consists of a finite alphabet Σ and a subset

R ⊆ Σ∗ × Σ∗ of rules, where Σ∗ is the free monoid on the set Σ. An element

(u, v) ∈ R is also written u → v. In general, if u → v, then for any x, y ∈ Σ∗ we

write xuy → xvy and say that the word xuy is rewritten (or reduced) to the word
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xvy. We also write x
∗
→ y if x → x1 → x2 → · · · → y for some finite sequence of

rewritings, including if x = y. The ordered pair (Σ, R) is a rewriting system for

a monoid M if

〈 Σ | u = v if (u, v) ∈ R 〉

is a monoid presentation for M . A rewriting system for a group is a rewriting

system for the underlying monoid. In particular, the set of elements Σ must be

monoid generators for the group.

An element x ∈ Σ∗ is irreducible if it cannot be rewritten. We would like

the irreducible words in Σ∗ to be a set of normal forms for our group G. From

a computational standpoint, we would also like to be able to start with any

representative of g ∈ G and have it be rewritten, in a finite number of steps,

to the unique irreducible element representing g. These desires motivate the

following definition.

Definition. A rewriting system (Σ, R) is complete if the following conditions

hold.

C1) There is no infinite sequence x→ x1 → x2 → · · · of rewritings. (In

this case the rewriting system is called Noetherian.)

C2) There is exactly one irreducible word representing each element of

the monoid presented by the rewriting system. (Such rewriting systems

are confluent.)

One usually establishes the Noetherian condition by imposing a well-founded

ordering on Σ∗, which is compatible with concatenation, and then checking that

if u → v ∈ R, then u > v in the ordering. In order to check confluence for the

systems we construct, we will apply the following lemma:

Lemma 2.1. Let Σ be a set of monoid generators for a group G, and let NF ⊂

Σ∗ be a set of normal forms for G which is subword closed. Let R be the subset

of Σ∗ × Σ∗ consisting of pairs of the form u → v, where u 6∈ NF , every proper

subword of u is in NF , v ∈ NF , and u =
G
v. Then R is a complete rewriting

system if and only if it is Noetherian.

Proof. Since every word w ∈ Σ∗ which is not in NF must contain a subword

which is the left hand side of a rule in R, the irreducible words of R are exactly

the normal forms in NF .

Finally, a rewriting system is finite if the set of rules R is finite, and it is

geodesic if each irreducible word is of minimal length among all representatives

of the corresponding group element. Not all groups which admit finite complete
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rewriting systems admit geodesic finite complete rewriting systems; if a rewriting

system is geodesic, then the process of rewriting a word of length n is guaranteed

to produce a normal form in at most (|Σ|+1)n steps, where Σ is the chosen set of

generators [19]. (For further background, see [17] and the references cited there.)

A finite complete rewriting system for a group allows the word and order problems

to be solved, and it also provides an algorithm for computing the homology groups

of the group. (See [10] for a survey of the connections between finite complete

rewriting systems and homology.)

Given the power of finite complete rewriting systems, it is not surprising

that they are difficult to construct. Some progress has been made, however, on

rewriting important classes of infinite groups. Finite complete rewriting systems

have been constructed for surface groups, many closed three-manifold groups

admitting geometric structures, and many Coxeter groups ([17] and [20]). In this

paper we will need the result that the class of groups admitting finite complete

rewriting systems is closed under group extensions.

Theorem 2.2. [16] If 1 → K → G→ Q→ 1 is a short exact sequence of groups,

with K and Q admitting finite complete rewriting systems, then G also admits a

finite complete rewriting system.

Since this theorem has not been published, we include a slightly revised

version of the proof from [16] for completeness. We begin with a lemma.

Lemma 2.3. Given a finite complete rewriting system (Σ, R) and a word w ∈ Σ∗,

there is a bound on the lengths of all sequences of rewritings w → w1 → · · · → wn
(where the length of this sequence is defined to be n). There is also a bound on

the length of any word to which w can be rewritten.

Proof. Suppose that w is an element of Σ∗ for which there is no such bound on

the lengths of sequences of rewritings of w. Because there are only finitely many

words x such that w → x with a single rewriting, there must be a word x1 with

w → x1 such that there is no bound on the length of sequences of rewritings of

x1. Repeating this argument gives a word x2 with x1 → x2 and no bound on the

length of a sequence of rewritings of x2, etc. This produces an infinite sequence

w → x1 → x2 → · · ·, contradicting the fact that R is Noetherian. Now, since

there is a bound on the length of any sequence of rewritings of w, and at each

stage only finitely many rewritings can be done to a single word, there are only

finitely many words that appear in any of these rewritings.

Definition. Given a word w ∈ Σ∗ and a finite complete rewriting system R over

Σ, the disorder of w, denoted by dR(w), is the maximum of the lengths of all of
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the possible sequences of rewritings w → w1 → · · · → wn, where the length of this

sequence is n. The stretch of w, denoted by st(w), is the maximum of the lengths

of all of the words which appear in any of these sequences. It is immediate from

these definitions that dR(w′) < dR(w) and st(w′) ≤ st(w) if w → w′.

Proof of Theorem 2.2. Suppose (Σ1, R1) and (Σ2, R2) are finite complete

rewriting systems for K and Q, respectively. The alphabet Σ = Σ1∪Σ2 generates

G as a monoid. Define a set R3 of rewriting rules of the form

kq → q(irreducible representative of q−1kq in Σ∗
1),

for each k ∈ Σ1 and q ∈ Σ2, where the irreducible representative is with respect

to the rewriting system R1. Then the set R = R1 ∪R2 ∪R3 is a finite rewriting

system for G. The irreducible words, with respect to R, are exactly the words

of the form vu where u is an irreducible word of the system (Σ1, R1) and v is an

irreducible word of (Σ2, R2). Because there is a bijection between the elements

of K and the irreducible words in (Σ1, R1) as well as a bijection between Q and

the irreducible elements of (Σ2, R2), this gives a bijection between the set of

irreducible words in Σ∗ and G. Therefore, in order to show that R is complete,

it remains to show that R is Noetherian.

If w ∈ Σ∗, let w′ be the word in Σ∗
2 obtained by deleting all letters of Σ1

from w, and let n = st(w′). Then the word w can be expressed as

w = k1q1k2...knqnkn+1

where each ki ∈ Σ∗
1 and each qi is either in Σ2 or is empty. Also, we assume

that the empty qi are all to the right of the non-empty ones, and that any kj
to the right of an empty qi is also empty. Define functions ψj from Σ∗ to the

non-negative integers by

ψ0(w) = st(w′),

ψ1(w) = dR2
(w′),

ψ2i(w) = dR1
(ki), and

ψ2i+1(w) = length(ki),

where i ranges from 1 to n + 1, and length denotes the word length over the

alphabet Σ1. In order to compare words of different lengths, if j > n, then define

ψj(w) = 0.

For two words w and x in Σ∗, define w > x if ψ0(w) > ψ0(x) or if ψ0(w) =

ψ0(x) and ψj(w) = ψj(x) for all j < k and ψk(w) > ψk(x). To see that this

6



ordering is well-founded, notice that in an infinite chain x1 > x2 > · · ·, ψj(xi) = 0

for all j > 2ψ0(x1) + 3 and for every index i. Then in this infinite sequence, the

values of the finite set of functions {ψ0, ..., ψ2ψ0(x1)+3} must all become zero after

finitely many steps. However, the only word with all of the functions ψj equal to

zero is the empty word.

Now suppose a rule in R is applied to a word w ∈ Σ∗. If the rule is in

R1, it must be applied to a subword ki; this rule decreases the value of ψ2i(w)

without altering the values of ψj(w) for any j < 2i. If the rule is in R2, then

it must be applied to a subword of w′ for which the intervening words ki are

empty. In this case the value of ψ0(w) = st(w′) is either decreased or remains

the same; however, the value of ψ1(w) = dR2
(w) must decrease. Finally, if

w → x by a rule in R3, the rule is applied to a subword of w of the form kiqi,

where ki and qi are not empty. In particular, if ki = k̃ik and qi = qq̃i, with

k̃i ∈ Σ∗
1, k ∈ Σ1, q ∈ Σ2, and q̃i ∈ Σ∗

2, then the rule replaces the subword kq

by q(irreducible representative of q−1kq in Σ∗
1). If w = k1q1k2...knqnkn+1 and

x = k̂1q̂1k̂2...k̂nq̂nk̂n+1, then q̂j = qj for all j and k̂j = kj for all j < i. However,

the word k̂i = k̃i is simply the word ki with the last letter k removed, so dR1
(ki) ≥

dR1
(k̂i) and length(ki) > length(k̂i). Thus ψj(w) = ψj(x) for all j < 2i, ψ2i(w) ≥

ψ2i(x), and ψ2i+1(w) > ψ2i+1(x). Thus w > x and the rewriting system is

Noetherian.

3. Rewriting Artin groups of finite type

We construct two somewhat different rewriting systems for Artin groups of

finite type. In both cases these rewriting systems have the added benefit that

the irreducible words give relatively well understood normal forms. The first

rewriting system we construct produces normal forms which are similar to those

introduced in [3] and [7]; the second produces the normal forms from [8]. Charney

shows in [7] and [8] that both sets of normal forms correspond to biautomatic

structures for finite type Artin groups.

We should highlight the difference between Charney’s biautomatic structure

and these rewriting systems. A biautomatic structure gives a set of normal forms

with good geometric structure, but it does not give a computationally effective

procedure for converting a given word into normal form as a finite complete rewrit-

ing system does. The normal forms in both of Charney’s biautomatic structures

are the representatives of group elements which are minimal with respect to a

shortlex ordering. In general, normal forms from a shortlex biautomatic struc-
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ture would be the irreducible words of an infinite complete rewriting system; in

this section we show that there are finite complete complete rewriting systems

for both sets of normal forms.

In discussing Artin groups of finite type, we use extended generating sets for

AG which are built from the elements of the associated Coxeter group. Because

the word problem is relatively simple for Coxeter groups, we can easily represent

the elements of CG − {1} as minimal length, or reduced, words in the generators

corresponding to vertices in G (not including their inverses). If u is a minimal

length word representing some nontrivial element in CG, let [u] represent the

corresponding Artin group element; the word [u] is exactly the same as the word

u, when thought of as elements in V ert(G)∗, but as group elements they are

contained in AG and CG respectively. A theorem of Tits ([5]) shows that if two

reduced words u and v represent the same element of CG, then the elements [u]

and [v] of AG are also equal. We let S be the collection of all the symbols [u],

where the letters [u] and [v] are considered to be the same letter in S if u and v

are reduced words representing the same element of CG. The set S is finite, since

CG is finite, and it generates AG as a group. Every finite Coxeter group contains

a unique element of maximal length. This maximal length element plays a special

role in both rewriting systems, so we let δ denote a representative of this ‘longest

element’ in CG. For every reduced word u, there are other reduced words u′ and

u′′ so that the products [u][u′] and [u′′][u] equal [δ]. (For more information on

Coxeter groups, see §II.3.C of [5].)

In order to make the notation easier, the symbol [empty word] may implicitly

appear on the right hand side of some rules in the rewriting systems below, or in

our discussions of these systems. Since this symbol actually represents the trivial

element of AG, it should be omitted.

3.1. The first rewriting system

The alphabet in this case will be

Σ1 = {[u] | [u] ∈ S} ∪ {[δ]}

where [δ] denotes a formal inverse for [δ]; adding [δ] gives us a set of monoid

generators for AG. In the construction of these rewriting systems we will often

refer to positive words, which are simply non-trivial elements of the free monoid

S∗.

A theorem of Deligne ([11], Prop 1.19, restated in the form we use as Lemma

2.2 in [7]), states that given any positive word α, then among all the elements
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[v] ∈ S where α is equivalent to γ[v] in AG for some γ ∈ S∗, there is a unique

maximal element [m] ∈ S such that α = ρ[m]. By ‘maximal’ we mean that

whenever α = γ[v] for any γ ∈ S∗ and [v] ∈ S, then [m] = [s][v] and γ = ρ[s]

for some word s that is either reduced or empty. Given reduced words u and v

in CG, there is a corresponding element [m(u, v)] ∈ S ⊂ AG that is essentially

the maximal length suffix of the element [u][v] of AG that can be represented

by a reduced word of CG. In other words, [m(u, v)] is the unique element such

that whenever the product [u][v] equals another product [w][x] in AG, where w

and x are each either a reduced or empty word, then there are also words r and

s, again either reduced or empty, such that [m(u, v)] = [s][x] and [w] = [r][s].

In particular, for a given pair of words u and v, there are words r(u, v) and

s(u, v) such that [m(u, v)] = [s(u, v)][v] and [u] = [r(u, v)][s(u, v)]. The elements

[m(u, v)], [r(u, v)], and [s(u, v)] depend only on the element [u][v] of AG, rather

than specific choices of reduced word representatives. We use these elements to

choose irreducible representatives of our rewriting system.

For each [u] ∈ S, let [u′] be the element for which [δ] = [u][u′], and let [û] be

the element for which [δ] = [u′][û]. Then u′ is a reduced word representing the

element u−1δ in CG, and û is a reduced word representing the element δ−1uδ in

CG.

The rules of our first rewriting system are

R1 = { (1) [δ][δ] → 1 (2) [δ][δ] → 1

(3) [u][v] → [r(u, v)][m(u, v)] (when s(u, v) is not empty)

(4) [δ][u] → [û][δ] (when [u] 6= [δ]) }.

It is easy to check that each of the rules in R1 is a relation in AG and that (Σ1, R1)

is a rewriting system for the Artin group AG.

This rewriting system is Noetherian, since the rules of this system are consis-

tent with a shortlex ordering on Σ∗
1. The lexicographic ordering is established by

defining [u] < [v] if length(u) < length(v), and [u] < [δ] for every u. Since none

of these rules allow the length of a word in Σ∗
1 to increase when it is rewritten,

this rewriting system is geodesic.

If the letters [u] in the irreducible words of this rewriting system are replaced

by shortlex minimal representatives in the vertex generating set, then the result-

ing words are in the set of canonical forms in [7]. While the canonical forms in [7]

are not exactly normal forms, since there may be more than one canonical form

corresponding to each group element, the replacement above gives a one-to-one

correspondence between the irreducible words of R1 and the subset of canonical
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forms in [7] which are the shortlex least for each of the group elements. Then

Lemma 2.1 applies to show that R1 is complete.

Since we choose to place maximal words [m(u, v)] on the right side of the

product [u][v] in the third rule, the irreducible words of this rewriting system

are referred to as ‘right greedy’. The normal forms for Artin groups originally

described in [3] were also defined in terms of the standard set of generators, not the

extended set we have used here; these normal forms were ‘left greedy’, since they

use maximal prefixes instead of maximal suffixes. Essentially the same discussion

as occurs above shows that there is a ‘left greedy’ finite complete rewriting system

on the extended generating set Σ1 also.

Example. Let AG = 〈a, b | aba = bab〉; this is the braid group on three strands.

Our generators and rules are then given as follows.

Σ1 = {[a], [b], [ab], [ba], [aba] = [δ], [aba] = [δ]}

R1 = { [δ][δ] → 1 [δ][δ] → 1 [a][b] → [ab]

[b][a] → [ba] [a][ba] → [δ] [b][ab] → [δ]

[ab][a] → [δ] [ba][b] → [δ] [ab][ab] → [a][δ]

[ba][ba] → [b][δ] [δ][a] → [b][δ] [δ][b] → [a][δ]

[δ][ab] → [ba][δ] [δ][ba] → [ab][δ] [δ][a] → [b][δ]

[δ][b] → [a][δ] [δ][ab] → [ba][δ] [δ][ba] → [ab][δ] }

3.2. The second rewriting system

In [8], Charney describes a different regular language of normal forms for

finite type Artin groups, using the alphabet

Σ2 = {[u], [u] | [u] ∈ S}.

In this family, the normal forms among positive words (words in the letters [u]

where [u] ∈ S) are the same as the ones above. However, on negative words, the

normal forms are ‘left greedy’. An arbitrary element of AG is expressed as

(normal form word in positive letters) (normal form word in negative letters).

The main advantage of this set of normal forms is that the set of generators

is symmetric; that is, for each generator, there is another generator which is

its inverse in the group. This is useful for relating the normal forms from the

rewriting system to geometric properties, such as the growth function for the

group, because the word length metric matches the metric on the Cayley graph

of the group (see [8]).
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To construct our second rewriting system, we will need another theorem

of Deligne ([11], Prop 1.14, restated in the form we use as Lemma 2.7 in [8]).

This theorem states that for any two positive words α, β ∈ S∗, there is a unique

maximal word ν ∈ S∗ such that α = α′ν and β = β′ν as elements of AG for

some α′, β′ ∈ S∗; this word is ‘maximal’ in the sense that whenever α = α̃γ

and β = β̃γ for any α̃, β̃, γ ∈ S∗, then ν = ν′′γ, α̃ = α′′ν′′, and β̃ = β′′ν′′

for some ν′′, α′′, β′′ ∈ S∗. In particular, for each pair of reduced words u and

v, there is a unique element [n(u, v)] ∈ S such that whenever [u] = [ũ][w] and

[v] = [ṽ][w], where ũ, ṽ, and w are each either a reduced or empty word, then

there are also words y(u, v), z(u, v), and n′′, again either reduced or empty, such

that [n(u, v)] = [n′′][w], [ũ] = [y(u, v)][n′′], and [ṽ] = [z(u, v)][n′′]. So for these

words u and v, [u] = [y(u, v)][n(u, v)] and [v] = [z(u, v)][n(u, v)] in AG. The

element [n(u, v)] is essentially the maximal length suffix of both [u] and [v] in

AG that can be represented by a reduced word of CG. The elements [n(u, v)],

[y(u, v)], and [z(u, v)] depend only on the elements [u] and [v] of AG, and not on

specific choices of reduced word representatives.

For each [u] ∈ S, let [u′] be the element for which [δ] = [u][u′].

The rules of our second rewriting system are

R2 = { (1) [u][u] → 1 (2) [u][u] → 1

(3) [u][v] → [r(u, v)][m(u, v)] (when s(u, v) is not empty)

(4) [v] [u] → [m(u, v)] [r(u, v)] (when s(u, v) is not empty)

(5) [u][v] → [y(u, v)][z(u, v)] (when [u] 6= [v] and n(u, v) is not empty)

(6) [u][v] → [y(u′, v′)][z(u′, v′)] (when [u] 6= [v]) }.

To construct a well-founded ordering compatible with this rewriting system,

we again use a shortlex ordering. For the lexicographic ordering, [u] < [v] if

length(u) < length(v), [u] < [v] if length(u) > length(v), and [u] > [v] for any u

and v. Since none of the rules allow word length in Σ∗
2 to increase, this rewriting

system is also geodesic. For this rewriting system, the irreducible words are

exactly the normal forms described in [8] for these groups.

Example. We once again create a rewriting system for the braid group on three

strands, AG = 〈a, b | aba = bab〉, this time using the second rewriting system.

B = {[a], [b], [ab], [ba], [aba] = [δ],

[a], [b], [ab], [ba], [aba] = [δ]}

R = { [a][a] → 1 [a][a] → 1 [b][b] → 1
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[b][b] → 1 [ab][ab] → 1 [ab][ab] → 1

[ba][ba] → 1 [ba][ba] → 1 [δ][δ] → 1

[δ][δ] → 1 [a][b] → [ab] [b][a] → [ba]

[b][ab] → [δ] [ab][a] → [δ] [a][ba] → [δ]

[ba][b] → [δ] [a] [b] → [ba] [b] [a] → [ab]

[a] [ab] → [δ] [ab] [b] → [δ] [b] [ba] → [δ]

[ba] [a] → [δ] [a][ba] → [b] [a][δ] → [ab]

[b][ab] → [a] [b][δ] → [ba] [ab][b] → [a]

[ab][δ] → [b] [ba][a] → [b] [ba][δ] → [a]

[δ][a] → [ab] [δ][b] → [ba] [δ][ab] → [b]

[δ][ba] → [a] [a][b] → [ba][ab] [a][ab] → [b]

[a][ba] → [ba][b] [a][δ] → [ba] [b][a] → [ab][ba]

[b][ab] → [ab][a] [b][ba] → [a] [b][δ] → [ab]

[ab][a] → [b] [ab][b] → [a][ab] [ab][ba] → [a][b]

[ab][δ] → [a] [ba][a] → [b][ba] [ba][b] → [a]

[ba][ab] → [b][a] [ba][δ] → [b] [δ][a] → [ba]

[δ][b] → [ab] [δ][ab] → [a] [δ][ba] → [b]

[δ][b] → [a][δ] [δ][a] → [b][δ] [δ][ba] → [ab][δ]

[δ][ab] → [ba][δ] [ab][ab] → [a][δ] [ba][ba] → [b][δ]

[a] [δ] → [δ] [b] [b] [δ] → [δ] [a] [ab] [δ] → [δ] [ba]

[ba] [δ] → [δ] [ab] [ab] [ab] → [δ] [a] [ba] [ba] → [δ] [b] }

Acknowledgment. The software package Rewrite Rule Laboratory [14] aided

in the analysis of the rewriting systems in these examples.

4. Rewriting Artin groups based on trees

In this and the following section, we will need a ‘freiheitsatz’ result of van

der Lek [22]. A proof of this result, in the case where G′ corresponds to an Artin

group of finite type, has been published in [9].

Theorem 4.1. (van der Lek) Let G be a labeled graph and let G′ be a full subgraph

of G. Then the natural map AG′ → AG is an injection.

Every Artin group based on a tree is the fundamental group of a link exterior.

To create this link, first place G in the plane, and put a circle around each

vertex in G. Should two vertices be joined in G by an edge labeled n, braid

the corresponding circles together with n positive crossings. Starting from the

Wirtinger presentation for this link, one can deduce that AG is actually the
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fundamental group of the resulting link exterior (see [6], especially example 2 in

§6). In Figure 1 we show an example of a graph G, and the resulting link.

3

4

23

A labeled graph G and the link corresponding to G

Fig. 1

To see that such Artin groups admit finite complete rewriting systems, we

will use the following results. The first is part of Stallings’ Fibration Theorem

[30]; the second follows from the partial description of the Bieri-Neumann-Strebel

invariant given in [23]; and the third is a generalization of the Proposition in [12].

Theorem 4.2. (Stallings) If G is the fundamental group of a compact three-

manifold, and N is a finitely generated normal subgroup with G/N ∼= ZZ, then N

is a surface group.

Theorem 4.3. Let AG be an Artin group based on a connected graph G. The

kernel of the map φ, which sends each generator of AG to 1 ∈ ZZ, is finitely

generated.

Lemma 4.4. (Droms) If G = A ∗C B, and φ : G → H with φ(C) = H, then

the kernel K of φ can also be expressed as a free product with amalgamation:

K ∼= KA ∗KC KB, where KA denotes K ∩ A, etc.

Proof. Because the argument is essentially the same as the proof in [12], we only

sketch the main steps; the key idea is to use Bass-Serre theory for group actions

on trees [28]. First, because G decomposes as a free product with amalgamation,

G acts on a tree T with fundamental domain a single edge e. Since K < G, K

also acts on T . Further, any edge in T can be represented as g · e for some g ∈ G.

Thus (cgg
−1)g ·e = e where cg ∈ C and φ(cg) = φ(g). However, cgg

−1 ∈ K, hence

the fundamental domain for the action of K is also e. Hence K decomposes as the

free product of the isotropy groups of the bounding vertices of e, amalgamating

the isotropy group of e.

13



Let AG be an Artin group based on a tree, and let φ : AG → ZZ as in

Theorem 4.3. Then the kernel K of φ is finitely generated, hence K is a surface

group. Because surface groups admit finite complete rewriting systems, and so

does ZZ, by Theorem 2.1 we know that AG admits a finite complete rewriting

system. However, rewriting systems are much more useful if they are made fairly

concrete, and so we describe the structure of AG decomposed as a group extension

in greater detail. Our proof will use the following result on one-relator groups.

Theorem 4.5. (Bieri & Strebel, Theorem IV.5.4 in [2]) Let G be a one-relator

group 〈x, y | r〉 where r = s1 . . . sn is cyclically reduced. If φ : G →→ ZZ has a

finitely generated kernel, then the kernel is free of rank

max{|φ(si . . . sj)| | 0 ≤ i ≤ j < n} − |φ(x)| − |φ(y)| + 1

Proposition 4.6. Let G be a finite, labeled simplicial tree, and let AG be the

corresponding Artin group. Then there is a short exact sequence 1 → Fm →

AG
φ
→ZZ → 1 where φ maps each standard generator of AG to 1 ∈ ZZ and the rank

of the free group is m =
∑

ei∈G

(ni − 1), where ni is the label of the edge ei ∈ G.

Proof. Our proof will be by induction on the size of G. If G is a single edge

the result follows by noting that AG is a one-relator group, and so by Theorem

4.5, the kernel is free of rank n − 1. To complete the induction, assume that

the result holds for trees with fewer that m edges, and let G be a tree with m

edges. Decompose G as X ∪ Y , where X and Y are subtrees of G which intersect

in a single vertex v, and each subtree has fewer than m edges. By Theorem 4.1

AG decomposes as a free product amalgamating the subgroup generated by v:

AG ∼= AX ∗ZZ AY . Lemma 4.4 shows that the kernel K of φ decomposes as a free

product with amalgamation: K ∼= KX ∗KZZ KY . By induction KX and KY are

free of the appropriate ranks. The result follows since φ restricted to 〈v〉 is an

isomorphism, so KZZ ∼= {id}.

Example. Let AG = 〈a, b, c | ab = ba, bcb = cbc〉. If L is the augmented trefoil

knot, as in Figure 2, then π1(S
3 − L) ∼= AG [6].
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The link L

Fig. 2

Let φ : AG → ZZ be the map defined by φ(a) = φ(b) = φ(c) = 1 as in the

discussion above. Then 〈b〉 is a transversal for the kernel K of the map φ in AG.

The Reidemeister-Schreier process using this transversal shows that K is a free

group on the generators {ab−1, cb−1, c−1b}. If we let x = ab−1, y = cb−1 and

z = c−1b, then {b, b, x, x, y, y, z, z} is a set of monoid generators for AG, where

letters topped with bars denote formal inverses. The general construction given

by Theorem 2.1 yields the following rewriting system.

R = { bb→ 1 bb→ 1 xx→ 1 xx→ 1

yy → 1 yy → 1 zz → 1 zz → 1

xb→ bx xb→ bx xb→ bx x b→ b x

yb→ bz yb→ bz yb→ bzy y b→ b y z

zb→ byz zb→ bz y zb→ b y z b→ by }

5. Artin groups and three-manifolds

We remind the reader that by “three-manifold group” we mean “the funda-

mental group of a compact three-manifold.” It was shown in [12] that a graph

group is a three-manifold group if and only if each connected component of the

defining graph is a tree or a triangle. In this section we show that Droms’ basic

argument can now be extended to a much larger class of Artin groups.

Proposition 5.1. Let G be a graph with edges labeled by integers greater than

one and let AG be the corresponding Artin group. Then

(i) If each connected component of G is a tree, or a triangle with all

edges labeled two, then AG is a three-manifold group.

(ii) If G is not chordal, AG is not coherent, hence it is not a three-

manifold group.
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(iii) If G is an even labeled graph, then AG is a three-manifold group if

and only if each connected component of G is a tree or a triangle with

all edges labeled two.

Recall that a graph is chordal if every circuit of length greater than three con-

tains a chord, and that a group G is coherent if every finitely generated subgroup

is finitely presented.

If AG is an Artin group of finite type, and δ is the special element discussed

before, then δ2 is central in AG (Lemma 1.26 in [11]). Since any Artin group

based on a single edge is of finite type, van der Lek’s theorem implies that all

non-free Artin groups contain free abelian subgroups of rank two. Also, it follows

from work in the previous section that, unless AG is free abelian, it contains

non-abelian free subgroups.

Item (i) follows by taking connected sums of the manifolds corresponding to

each connected component of the graph.

The proof of (ii). Suppose G is a non-chordal graph; then there is a full

subgraph C of G which is a cycle of length greater than three. We will show that

AC is not coherent, and hence AG cannot be coherent by Theorem 4.1. That

three-manifold groups are coherent follows immediately from the work in [27].

Let X be two adjacent edges in C, and let Y = C − X . By Theorem 4.1,

AC ∼= AX ∗F2
AY , where F2 is the free subgroup generated by the two vertices in

X ∩ Y . So by Lemma 4.4, the kernel of the map φ : AC → ZZ, decomposes as a

free product of KX and KY amalgamating K ∩ F2. Proposition 4.6 shows that

KX and KY are finitely generated free groups. However, K ∩F2 is the kernel of

the induced map F2 → ZZ, which is not finitely generated. The free product of

finitely generated free groups, amalgamating a not-finitely generated free group,

is not finitely presentable by exercise VIII.5.2 in [4], or it follows by Baumslag’s

more general result in [1]. Hence the kernel K is finitely generated but not finitely

presented; therefore AC is not coherent.

The proof of (iii). We have established ⇐ in the previous section. In order

to establish ⇒ we assume that G is an even-labeled graph and that AG is a

three-manifold group. By (ii) we may assume that G is chordal. Our proof is by

contradiction, so we also assume that some connected component of G is neither

a tree nor a triangle with all edge labels two.

Since G is chordal and not a forest, G contains a triangle. Consider first the

case in which G contains a triangle not all of whose edges are labeled by twos.

In particular let Σ ⊂ G be a triangle with vertices x, y and z where the label of

x—y is greater than two. By Theorem 4.1, AΣ is a finitely presented subgroup of
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the compact three-manifold group AG. A theorem of Jaco says that any finitely

presented subgroup of a compact three-manifold group is itself the fundamental

group of a compact three-manifold [21]. So it suffices to show that AΣ is not the

fundamental group of a compact three-manifold in order to get a contradiction

in this case.

Let K be the kernel of the map φ : AΣ → ZZ defined by φ(x) = φ(y) = 0 and

φ(z) = 1; by work in [23], K is finitely generated. Thus, if AΣ were a compact

three-manifold group, then by Theorem 4.2, the kernel of φ is a surface group.

However, A{x, y} contains a copy of ZZ2 and (because the edge label of x—y is

greater than two) a non-abelian free subgroup. Thus, since A{x, y} < K, the

kernel K contains both free and free abelian subgroups, which is not possible if

K is a surface group.

We can now assume that G is chordal, G is not a forest, and every triangle

in G has all of its edges labeled two. It follows that one of the graphs in Figure

3 must be a subgraph of G [12]. (In Figure 3, all unlabeled edges are implicitly

labeled “2”.) Droms’ work rules out the second and third possibilities. The first

possibility cannot occur because the kernel of the map sending the central vertex

to 1 ∈ ZZ and all of the other vertices to 0 is finitely generated [23] and contains

a copy of ZZ2 as well as a non-abelian free group.

2n

The possible subgraphs

Fig. 3
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