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ABSTRACT. The word problem for Thompson’s group F' has a solution, but it
remains unknown whether F' is automatic or has a finite or regular convergent
(terminating and confluent) rewriting system. We show that the group F' admits a
natural extension of these two properties, namely autostackability, and we give an
explicit bounded regular convergent prefix-rewriting system for F.

1. INTRODUCTION

The group of orientation-preserving piecewise linear automorphisms of the unit
interval for which all linear slopes are powers of 2, and all breakpoints lie in the
2-adic numbers, is known as Thompson’s group F. The group F' has a well-known
finite presentation

F=(z,y| [y, zyz™?, [y, 2°ya™)
(and the generators = and y are the elements zy and w1, respectively, of a standard
infinite generating set). The group F' has been the focus of considerable research in
recent years, because of its connections to many other fields, because of long-standing
open problems such as the amenability of F', and because of its many surprising prop-
erties (for example, F' is an infinite dimensional torsion-free group with homological
type F' P [4]).

Many algorithmic problems have been shown to have solutions for F. The word
problem is solvable for F'; moreover, Guba [12] shows that the Dehn function for F’
is quadratic and Elder and Taback [8] show that F' is 1-counter graph automatic.
Guba and Sapir [13] prove that the conjugacy problem is solvable. Kassabov and
Matucci [15] show that the simultaneous conjugacy problem is solvable, and Burillo,
Matucci, and Ventura [5] show that the twisted conjugacy problem also has a solution.
Golan and Sapir [10] give a solution to the subgroup membership problem for a large
family of subgroups of F. In [1], Bleak, Brough and Hermiller show that there is
an algorithm that, upon input of a finite set S of elements of F' (that is, words over
the generating set A := {z*! y*'}), can determine whether or not the subgroup (S)
generated by S is solvable and, if it is, also determines its derived length. In [9],
Golan shows that there is an algorithm that, upon input of the finite subset S C F,
can determine whether S generates the entire group F.
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On the other hand, many algorithmic questions also remain open for Thompson’s
group F', including the questions of whether F' is an automatic group (see [7] for
definitions and background on automatic groups), and whether F' admits a finite or
regular convergent rewriting system (defined in Section 2.1); see the problem list [18].
Both of these are questions about the complexity of the word problem for F; in
particular, about whether the word problem can be solved using a computer with a
finite amount of memory, known as a finite state automaton.

Both (prefix-closed) automatic structures and finite convergent rewriting systems
are special cases of convergent prefix-rewriting systems. A convergent prefix-rewriting
system, or CP-RS, for a group G consists of a finite set A and a set R C A* x A* of
ordered pairs of words over A such that G is presented, as a monoid, by

G =Mon(A | {u=v| (u,v) € R}),

and the rewritings uz — vz for all (u,v) € R and z € A* satisfy

e (termination) there is no infinite sequence of rewritings 7 — x5 — - -, and
e (confluence) the set Irr(R) of words that cannot be rewritten is a set of
(unique) normal forms for G.

A CP-RS is regular if the subset R C A* x A* is (synchronously) regular; that is, if the
set of padded words obtained from R can be recognized by a finite state automaton
(see Section 2.1 for more information on regular sets, finite state automata, and
padded words). Otto [17] has shown that a group G has a prefix-closed automatic
structure if and only if G admits a regular CP-RS R satisfying the further condition
that whenever (u,v) € R then v € Irr(R) and u € Irr(R\ {(u,v)}). The group G has
a finite convergent rewriting system if and only if there is a finite set ' C A* x A*
such that {(wu/,wv’) | w € A*, (u',v") € R'} is a CP-RS for G.

In [3], Brittenham, Hermiller, and Holt considered another solution to the word
problem for groups by finite state automata that is a natural extension of both auto-
maticity and finite rewriting systems, namely autostackability. A CP-RS R is bounded
if there is a constant K > 0 such that whenever (u,v) € R, then (u,v) = (wu/, wv')
for some w,u’,v" € A* with I(v') + [(v') < K. A group G is autostackable if G has a
bounded regular convergent prefix-rewriting system. Every group that has a prefix-
closed (asynchronous or synchronous) automatic structure, or has a finite convergent
rewriting system, is autostackable [3].

In analogy with the characterization of automatic groups by a regular set of normal
forms with a K-fellow traveler property, autostackability of a group G with a finite
inverse-closed generating set A also has a topological characterization, in terms of a
discrete dynamical system on the Cayley graph I' := I'4(G) of G over A, as follows.
A flow function for G with bound K > 0, with respect to a spanning tree 7" in I', is
a function ® mapping the set E of directed edges of I" to the set P of directed paths
in I, such that

e (fixing the tree) for each e € E the path ®(e) has the same initial and terminal
vertices as e and length at most K, and ® acts as the identity on edges lying
in T, and
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e (termination) there is no infinite sequence ey, e, €3, ... of edges with each e;
not in 7" and each e; ;1 in the path ®(e;).

Extending ® to ® : P — P by ®(e1---€,) := (1) - - - B(en), then for all p € P, there
is a n, € N such that Pn (p) is a path in the tree T; that is, when D is iterated, paths
in ' “flow” toward the tree. Let A7 denote the set of words labeling non-backtracking
paths in T starting at the vertex labeled by the identity of GG, and let label : P — A
be the function that returns the label of any directed path in I'. The flow function ®
is regular if the graph of ®, written as a subset of A* x A* x A* by

graph (®) := {(, a, label(®(e,,))) |y € Np,a € A, and e,, € E has
initial vertex v and label a},

is regular. A group G is autostackable if and only if G admits a regular bounded flow
function [3].

Several convergent prefix-rewriting systems for Thompson’s group F', over the gen-
erating set A = {z*!, y*'}, have been described in earlier papers; in each case the
CP-RS is computable (can be recognized by a Turing machine), but is not regular.
In [6], Cleary, Hermiller, Stein and Taback show that Thompson’s group F' has a
bounded CP-RS R (by constructing a bounded flow function) for which the set R is
computable, and the normal form set Irr(R) is a set of words labeling quasigeodesics
in the Cayley graph that is not regular, but that is a context-free language (the next
simplest language class in the Chomsky hierarchy of computable languages). Guba
and Sapir [11] give a convergent rewriting system R for F' for which the set R is
computable but not context-free (and hence not regular), but the normal form set
Irr(R) is the regular set

N =A\A* ({aa™" |a € Ay U {y‘za*y, ya’c"y™" | e € {1,—1}}) A%
that is, \V is the set of all freely reduced words over A that do not contain a subword
of the form yx'y or yz'™ly~! for any e € {1,—1} and i > 1. Section 2.2 contains
more details on the Guba-Sapir system.

In the main result of this paper we construct a new prefix-rewriting system for F'
using the Guba-Sapir normal form set A/, in the following.

Theorem 1.1. Thompson’s group F' is autostackable. Moreover, the following is a
bounded reqular convergent prefiz-rewriting system R for F':

R = Usa {uaa‘1 —ulu€ A*}
U (Ueeqr,—13 Yieqay {uy e’y = ua'yz™ " 'ya™ |uya’ e N'})
U (Ueeqi,—13 Uiegasy {uya'y ™ — ua’y a7y’ |uya’ € N'})
U {ury = uwy 'zyz?ya® |u e NN (AyH A% )}
U{uz®y™ = uy 2y ey [u e NN (Afy T A ) )
In essence, this system contains only finitely many rewriting rules ' — ¢/, but

when a rule can be applied is determined by the prefix, in normal form, preceding
the subword on which the rule is to be applied. More particularly, for each of the
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finitely many rewritings v’ — o', there is a regular language L, . such that the
rewriting wu'z — wv'z can only be applied if w € L, ,sy. Thus the word problem for
Thompson’s group F' can be solved by a finite state machine.

We note that the set of normal forms for the prefix-rewriting system in Theorem 1.1
is the same as the set of normal forms of the Guba-Sapir rewriting system; however, in
contrast to the Guba-Sapir rules, the prefix-rewriting system in Theorem 1.1 is regu-
lar, and at each step a word of length at most 5 is replaced by a word of length at most
10. In our proof of Theorem 1.1, we consider the topological view of autostackability,
and show that Thompson’s group F' has a regular bounded flow function.

The paper is organized as follows. We begin in Section 2 with notation used
throughout the paper, background on regular languages (in Section 2.1), and a more
detailed discussion of the Guba-Sapir rewriting system and its normal form set (in
Section 2.2). Section 3 contains an analysis of the relationship between the normal
forms (in the set A/ above) for the two endpoints of an edge of the Cayley graph
L'4(F) of F. In Section 4, we define a well-founded strict partial order on the edges
of I, which is used (in Section 6) in the proof of termination for the flow function
for F'. In Section 5, we give a pictorial motivation for the choice of this strict partial
order. Finally, Section 6 contains the proof of Theorem 1.1.

2. BACKGROUND AND NOTATION

Let z := xy and y := 1 be the generators of Thompson’s group F', and let A :=
{2+ y*1}. Let A* be the set of all words over A. Let 1 denote the identity element
of F', and let A\ denote the empty word in A*. For two words v, w € A*, we write
v = w if v and w are the same word in A*, and v =p w if v and w represent the same
element of F'.

Let I' = T'4(F') be the Cayley graph of Thompson’s group F' over the generating
set A. Given any directed edge e of I, let e_ and e, denote the elements of F' at the
initial and terminal vertices of e, respectively, and let label(e) denote the label of the
edge e. We denote e by e,, where a = label(e) and v € A* is any word satisfying

Y =F €_.

2.1. Synchronously regular languages and rewriting systems. Details and
proofs of the contents of this section can be found in [7, 14, 3].

Let A be a finite set. The set of all finite strings over A (including the empty
word A) is written A*. A language is a subset L C A*. Given languages L1, Lo the
concatenation LiLy of L and Lo is the set of all expressions of the form [/, with
l; € L;. The Kleene star of L, denoted L*, is the union of L™ over all integers n > 0.

The class of reqular languages over A is the smallest class of languages that contains
all finite languages and is closed under union, intersection, concatenation, complement
and Kleene star. (Note that closure under some of these operations is redundant.)
Regular languages are precisely those accepted by finite state automata; that is, by
computers with a bounded amount of memory.

The concept of regularity is extended to subsets of a Cartesian product (A*)" =
A* x -+ x A* of n copies of A* as follows. Let $ be a symbol not contained in A.
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Given any tuple w = (a1,1- Q1 mys ooy Gp1 v Apm,) € (A*)™ (with each a;; € A),
rewrite w to a padded word w over the finite alphabet B := (AU $)” by w :=
(@11, ey ) - - (@1,N, ooy Gny) Where N = max{m;} and @;; = a;; forall1 <i<n
and 1 < j < m; and a;; = $ otherwise. A subset L C (A*)" is called a regular
language (or, more precisely, synchronously regular) if the set {w | w € L} is a
regular subset of B*.

The following lemma, much of the proof of which can be found in [7, Chapter 1],
contains closure properties of regular languages that are used below in Section 6.

Lemma 2.1. Let A be a finite set, let z be an element of A*, and let L, L; be reqular
languages over A. Then the following languages are also reqular:

(1) (Quotient) L, :={w € A* 1wz € L}.

(2) (Product) Ly X Ly X «++ X L.

The definition of a rewriting system is very close to that of prefix-rewriting in
Section 1. A convergent rewriting system for a group G consists of a finite set A and
a set R C A" x A* of ordered pairs of words over A such that G is presented, as a
monoid, by G = Mon(A | {u = v | (u,v) € R}), and the rewritings wuz — wvz for
all (u,v) € R and w, z € A* satisfy the termination and confluence properties; that is,
there is no infinite sequence of rewritings, and the set of irreducible words is a set of
(unique) normal forms for G. (The only alteration to the definition of CP-RS needed
to obtain the definition of convergent rewriting system is in the prefix w prepended
in the rewritings.) The rewriting system is finite if R is a finite set, and the system
is reqular if the subset R C A* x A* is (synchronously) regular.

2.2. The Guba-Sapir rewriting system for /' and its normal forms. Guba
and Sapir state in [11, Theorem 2] that Thompson’s group F' admits a convergent
rewriting system and a regular set of normal forms in the standard generators x = x
and y = x;. The convergent rewriting system given in [11] is:

aa"l = A ' a € {a*t y*},
¥=q yaly — alyr Tyt ee {1, ~1} and i > 1
yexz—l—ly—l - xz—l—ly—lx—zyexz

We refer to the Y-rewriting rules aa=! — X as free reductions, as usual, and to
yerty — wiye i~y it
and

€, i+1

yx y—l — xi—i—ly—l

T ’lyE:L,Z’
with € € {1, =1} and i > 1, as the y-rule and y~'-rule of size i, respectively.
Throughout the rest of the paper, the symbol N will denote the set of normal forms
over the generating set A defined by the rewriting system X; that is, A/ is the set of
words that cannot be rewritten using ¥. We note that the set A is regular, since N/
is the set of all words over A which do not contain the left hand side of any of the
rules in ¥ as a subword, and since the set of left hand sides of rules in Y is a regular
language. However, the appearance of the integer i three times on the right hand
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side of the y- and y~!-rules of the rewriting system Y shows that the set of padded

words obtained from ¥ does not obey the Pumping Lemma for regular languages [14,

Lemma 3.1], nor the Pumping Lemma for context-free languages [14, Lemma 6.1],

and so the rewriting system 3 is neither (synchronously) regular nor context-free.
The following lemma is immediate from the description of 3.

Lemma 2.2. The set of normal forms N is the set of all words over A of the form
l.inyﬁn .. l;ilyﬁlxio’

such that n > 0, each €; € {£1}, each i; € Z, and for every j € {1,...,n — 1} the
following hold.

(1) Ifi; =0 then €; = €j41 (i.e., the word is freely reduced).

(2) Ifej =1 then i; < 0.

(3) If e, = —1 theni; < 1.

For any element g € F, write nf(g) for the normal form in N representing G;
similarly, for any word w over A, write nf(w) for the unique word in N such that
w =p nf(w).

Throughout this paper we also let T denote the subtree of I associated with N;
in other words, T is the subtree of I' such that the set of labels of nonbacktracking
paths in T, starting from the identity vertex, is the set of normal forms in N.

Next we give a description of the edges that do not lie in the tree T. Note that a
directed edge e = e, , with v = nf(e_) lies on the tree 7" if and only if either ya € N
or the last letter of v is a~'. That is, the edge e = e,, lies on T if and only if the
freely reduced word freely equivalent to ~ya belongs to /. Hence Lemma 2.2 implies
the following.

Lemma 2.3. Let e = e, , be a directed edge of I' where a € {z*',y*'} and
v =ainy gyt € NV
Then e does not lie on the tree T if and only if one of the following holds.

(1) label(e) =y, n > 1, and iy > 1.
(2) label(e) = y~, n > 1, and iy > 2.

In particular, all edges of T' labeled by = lie on the tree T.

We end this section by defining a few parameters associated to every word in normal
form.

Let v = o'y - -2y be a word in normal form. Denote by s(v) the vector
s(y) = (Sn, ..., 80) of cumulative z-exponents in v defined, for £ =0, ..., n, by

Sk i=1g + lg—1 + -+ ip.

Note that the vector has at least one entry, even when the word v is empty (indeed,
in that case, s(y) = (0)). We also define two cutoff points, namely, let

m(7y) = min{k | s <0},
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if the set on the right hand side is nonempty; otherwise, let m(y) := n, and similarly,
m/(y) = min{k | s, < 1},

if the set on the right hand side is nonempty; otherwise, let m’(y) := n. We extend
our notation to elements g of F' by declaring s(g) to mean s(nf(g)), m(g) to mean
m(nf(g)), and so on.

3. NORMAL FORMS OF THE ENDPOINTS OF EDGES OUTSIDE OF THE NORMAL
FORM TREE

We now turn to the analysis of the relation between the normal forms of the end-
points of edges that are not on the normal form tree T'. It will be convenient to set
up and fix a situation and notation used throughout Sections 3 and 4.

Let e be an edge not on the tree T', labeled by y, connecting ¢ to ¢; that is,

/

g v 9
e:eo —e
satisfies e_ = g, e, = ¢', and ¢’ =r gy. We also consider the inverse edge e}, labeled

by 7!, directed from ¢’ to g. Let the normal forms of the endpoints of e be given by

i1, €1

v i=nf(g) = a™y -2ty 2,
with each ¢, € {£1}, and

f)// = nf(g/> — xjn’yenl .. ,xj1y€1xj0’
with each ¢, € {£1}. Note that, along with the usual requirements from Lemma 2.2
that the normal forms v and " must satisfy, we also have the additional requirements
from Lemma 2.3, since e is not on the tree 7. Thus, n,n’ > 1, iy > 1 and j, > 2.
Using the notation from Section 2.2, let m := m(vy) and m’ := m/(7’). Then

5(7) = (Sm . 'a80)> 8(7,) = (S;z’? e '?86)7

m = m(y) = min{k | s < 0}, m' =m'(y") = min{k | s, <1}

Since the rewriting system > is convergent, there is a sequence of Y-rewritings
from any word in A* to its normal form; indeed, there may be many different such
derivations. We define the standard -rewriting, or standard Y-derivation, of a word
in A* to be the sequence of X-rewritings to the normal form where at each rewriting
step a X-rule is applied to the shortest possible rewritable prefix. In the following
subsections we provide details of the standard Y-rewritings of vy and 7'y~ to their
normal forms " and ~, respectively. We also extract some parameters associated to
those standard Y-rewritings directly from ~ and +/, and more specifically, from s(7),
s(vy'), m, and m/.
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3.1. Rewriting vy to +/. In this section we describe how to obtain the normal form
7/ for the terminal vertex ey =p vy of e = e, ,, starting from the word ~y.

Lemma 3.1. We have m > 1, and the following assertions hold.
(1) If either m =n or s, # 0 or y*+' =y, then

—Sm—1—1, €m

,}/ — nf(fyy> — xinyen . LUierlyEerl.fCSmyI' Yy ximflyemfl . xil yelxiO‘i‘l.
2) Otherwise, if m <n, s, = 0, and ym+' =y~ then
(2) : y y

fy/ — nf(,}/y) — xinyen .. xim+2yﬁm+2xim+1+im—1y€mxim71yﬁmfl . xilyﬁlxiO‘i‘l'
In each case, there is a sequence of X-rewriting rules leading from ~y to its normal
form «' such that no y~'-rules are ever used, exactly m y-rules are used and their

sizes are, in the order in which they are used,
S0, S1, S2, -y Sm—1-

(In item (1), the prefix 'y - - - x'm+1y“m+1 is omitted when m = n, and in item (2),
the prefix z'y® ... x'm+2y“m+2 ig omitted when m =n — 1.)

Proof. Since sy = iy > 1, we have m > 1.

Our standard X-derivation proceeds from ~y in m phases. During each of the m
phases exactly one y-rule is used followed by a complete free reduction. In detail,
phases 1 through m — 1 proceed as follows. In phase 1 the y-rule of size s is applied
to y“1x*oy, followed by a complete free reduction of the obtained word. Then, in phase
2 the y-rule of size s; is applied to y“x®'y, followed by a complete free reduction,
and so on, until in phase m — 1 the y-rule of size s,, 5 is applied to y“—1xm2y,
followed by a complete free reduction. In phase m, the y-rule of size s,,_1 is applied
to ym a1y, followed by free reduction (not necessarily complete), yielding the word

(1) xsmyx_smfl_lyemximflyemfl R xil yelxi0+1’
if n = m or, otherwise, if n > m,
(2) xinyfn - xim+1y5m+1x5myx_5m71_1y5mxim71yfmfl R xilyflxi0+1

At this point, to finish phase m of the standard Y-rewriting to 7/ we just need to
complete the free reduction.

Let us indicate why the rewriting described up to this point (before this last free
reduction) is actually possible; that is, why we eventually arrive, during phase m, at
a word of the form (1) or (2) in the appropriate cases.

The original word

vy = xinyEn .. xhyqzioy _ l.inyfn .. zh yqxé’oy
is freely reduced and since its prefix « is a normal form, the only available ¥-rewriting
is the application of the y-rule of size sg to the underlined portion of the word, yielding

a word that freely reduces to
xslyx—SQ—lyelxio—l—l
if n=m =1, and to

xznyen L. ngyegxslyx—so—lyell,zo—i-l’
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in all other cases. If m = 1 we are done (we arrived at a word of the form (1) or (2)
during phase 1).

If n > m > 2, then we are in the second case above. The prefix y ---y is
nonempty and y* actually appears in it. Note also that sy > 1, which implies that
—sp — 1 < =2 and, since m > 2, s; > 1. Thus the word is freely reduced and the
only available »-rewriting is the application of the y-rule of size s; to the underlined
portion of the word, yielding a word that freely reduces to

1,52 yx—sl—lysgl,zl ysl ZL’ZO+1,

if n =m =2, and to

xinyen L. l’i3y63$82y$_81_1y62$i1y511’i0+1,
in all other cases. If m = 2 we are done (we arrived at a word of the form (1) or (2)
during phase 2).

If n > m > 3, then we are in the second case above. The portion of the word
Y- -y® is nonempty and y® actually appears in it. Note also that s; > 1, which
implies that —s; — 1 < —2 and, since m > 3, sy > 1. Thus the word is freely reduced
and the only available Y-rewriting is the application of the y-rule of size sy to the
underlined portion of the word... Et cetera; we continue this process through the m
phases.

Let us consider now the words (1) or (2) obtained during phase m.

Note that, since s,,_1 > 1, we have —s,,_1 — 1 < —2. Therefore, if n = m, the
word (1) is freely reduced and, since no y* rules are applicable, it is the normal form
of yy. In the other case, n > m, we obtain the word (2). If s, # 0 or y“»*+' = y this
word is also freely reduced and it is the normal form of vy. Finally, if n > m, s, =0,
and y“m+! = y~! then there are further free reductions in the underlined portion of
the word (2), yielding the word

$i7ly57l .. l;im+2y5m+2xim+1_Smfl_lyfmximflyEmfl ... l;ilyEIxiO“l‘l.

We claim that, in this last case, either n = m + 1 or 4,41 — Sj_1 — 1 < —1, which
implies that the obtained word is freely reduced and, since no y*-rules can be applied,
it is the normal form of ~y. Indeed, if n > m + 1 then —s,, 1 < —1 (since s,,_1 > 1)
and 7,11 < 1, which yields 4,41 — s;n—1 — 1 < —1. Since s, = 0, then —s,, 1 = iy,
completing the proof of part (2) of the lemma. O

Remark 3.2. It will be useful to record some of the conclusions of Lemma 3.1 in a
slightly different form. Namely, if either m = n or s, # 0 or y“+! = y, then there
are no free cancellations of y letters during the standard X-rewriting, n’ = n+ 1, and
the z-exponents and the cumulative x-exponents of 4/ are given in the left half of
Table 1. We call this case the no y-cancellation case. Otherwise, if m < n, s, = 0,
and y“m+! = y, then there is a single free cancellation of y*-letters during the standard
Y-rewriting, n’ = n — 1 (note that, in this case n > m + 1 > 2), and the z-exponents
and the cumulative x-exponents of 7/ are given in the right half of Table 1. We call
this latter case the y-cancellation case.
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]{7 jk S%
0 10 —|— 1 s0+1 L I s,
1 i s1+1 0 i+ 1 s+ 1
. 1 11 s1+1
m—1 Tn—1 Sm_1 + 1 : : :
m | —Spo1— 1 0 m—1 1 Sm_1 + 1
m—+1 Sm Sm m i1 + i — 1 Sl
m + 2 Umt1 Sm+1 m—+1 Tint2 Sm+2
: n—1 in Sn
n+1 in Sn

TABLE 1. x-exponents and cumulative x-exponents of +": the no y-
cancellation case (left) and the y-cancellation case (right)

3.2. Rewriting v'y~! to 7. The previous lemma describes, in much detail, how to
“multiply by 3”. The next lemma, regarding “multiplication by y~!'”, has a similar
statement and an analogous proof, so we skip some but not all details, since there are
a few subtle points that are sufficiently different.

Lemma 3.3. We have m’ > 1, and the following assertions hold.
(1) If either m' =n’ or s, # 0 or y*='+1 =y~ !, then

1o Ent 1 —S:n,71+1

v = nf(fy/y_l) — x]n Yy xjm’+ly€m’+lxsfm/y_ T ye'm’xﬂjmlflyem’fl e leyelxjo_ .

(2) Otherwise, if m" <n', s/, =0, and y>~+ =y, then
— nf T =1\ L dnt o Ent Jm! +20:€m/ 42 pdm! +1 T Im! 10 Eml nedm! —1 9, Em! —1 J1,,E1 .J0—1
y=nf(yy™) = 2y Iyt Yo I m iy gy IO

In each case, there is a sequence of L -rewriting rules leading from ~'y~* to its normal
form ~ such that no y-rules are ever used, exactly m' y~'-rules are used and their
sizes are, in the order in which they are used,

/ / / /
so—1, 55 —1, s5—-1, ..., s, ;— 1

(In item (1), the prefix a/n/yce .. pIm'+1yfm'+1 is omitted when m’ = n/, and in
item (2), the prefix z/n yn’ - - . pIm’+295m'+2 is omitted when m’ =n’ —1.)

Proof. Since sj = jo > 2, we have m' > 1.

Our standard Y-derivation proceeds from +'y~* in m’ phases. During each of the m’
phases exactly one y~!-rule is used followed by a complete free reduction. In detail,
phases 1 through m’ — 1 proceed as follows. In phase 1 the y~'-rule of size s — 1
is applied to y*'z*oy~!, followed by a complete free reduction of the obtained word.
Then, in phase 2 the y~'-rule of size s| — 1 is applied to y=2z*1y~!, followed by a
complete free reduction, and so on, until in phase m’ — 1 the y~'-rule of size s, ,—1
is applied to y=m—12°m—2y~1, followed by a complete free reduction. In phase m/, the

1
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y~L-rule of size s/, | — 1 is applied to yem z*m -1y~ followed by free reduction (not
necessarily complete), yielding the word

(3) "L’sfm’y_ll’_sfmlfl—l—lyam’ xjm’fl yamlfl e l'jlyel xjo_l’

if n’ = m’ or, otherwise, the word

1,.—s , +1

(4) l'jn’ yan’ e xjm’+1y€m’+1x8fm/ y_ T yem’xjm’flyamlfl e leyall’jo_l.

Note that, since s/, > 2, we have —s] ,_, +1 < —1. Therefore, if n" = m/, the
word (3) is freely reduced and, since no y* rules are applicable, it is the normal form
of v/y~!. In the other case, n’ > m/, we obtain the word (4). If s/ , # 0 or y*m'+1 = y~!
this word is also freely reduced and it is the normal form of v'y~!. Finally, if n’ > m’,

s, =0, and y*m'+1 = y, then there are further free reductions in the underlined

m

portion of the word (4), yielding the word

!y Enl +1 Em!

. . - / . .
x]n y n ... x]m’+2y€m’+2x-ym’Jﬁl_sm/,l y J1,,E1 ‘70_1'

xjmlflyamlfl ORI vk Ve

We claim that, in this last case, either n' = m’ + 1 or jpy1 — s, +1 < —1,
which implies that the obtained word is freely reduced and, since no y*-rules can be
applied, it is the normal form of 7/y~!. Indeed, if n’ > m’+1 then s/, | < —2 (since
st 1> 2)and Jure1 < 0 (since €,41 = 1), which yields j41 — s/, +1 < —1.

Since s/, = 0, then —s/ , | = j,, completing the proof of part (2) of the lemma. O

Remark 3.4. It will also be useful to record some of the conclusions of Lemma 3.3
in a slightly different form. Namely, if either m’ =n' or s/, # 0 or y“='+1 =y, then
there are no free cancellations of y letters during the standard X-rewriting, n = n’+1,
and the z-exponents and the cumulative z-exponents of v are given in the left half
of Table 2. We call this case the no y~!'-cancellation case. Otherwise, if m' < n/,

k " Sk

0 jO —1 S/O -1 k n Sk

1 Ji sp—1 0 Jo—1 sh—1

5 - - 1 j 51
W 1| e |Se—1| | ' '

m' | =8+ 1 0 m' —1 Jm—1 st -1
m: +1 ‘S;n/ ;S;n’ m' jm’+1 + jm’ +1 5lm/+1
m'+2 Jm'+1 S/ 41 m' +1 Jm'+2 S0

: : : n' —1 Jn! S;’L,
n +1 jn’ S/n/

TABLE 2. wz-exponents and cumulative z-exponents of +': the no y~!-

cancellation case (left) and the y~!-cancellation case (right)

s’ , =0, and y*='+1 = vy, then there is a single free cancellation of y*-letters during

m
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the standard Y-rewriting, n = n’ — 1, and the z-exponents and the cumulative z-
exponents of v are given in the right half of Table 2. We call this latter case the

y~t-cancellation case.

In the Lemmas 3.1 and 3.3, we produced standard Y-rewritings of vy and ~'y !

when the edges corresponding to y and y~!, respectively, are not on the normal
form tree. We do not need the following observation, but a careful reading of the
proofs reveals that any X-rewriting of vy uses m y-rules of the same sizes and in
the same order as in the standard rewriting, and uses no y~!-rules. Similarly, any
Y-rewriting of 7/y~! uses m’ y~l-rules of the same sizes and in the same order as
in the standard rewriting, and uses no y-rules. In other words, the only freedom of
choice we have during the Y-rewriting of vy and +/y~! is in the order of performing
the free reductions (including the possibility of postponing some free reductions and
applying some y*-rules before the word is freely reduced).

4. ORDERING THE DIRECTED EDGES IN THE CAYLEY GRAPH

In this section we define a well-founded strict partial order on the edges of the
Cayley graph I' of F', which will be used in Section 6 in the proof of the termination
of the flow function.

Throughout this section we use the same notation defined in Section 3. In partic-
ular, e is a directed edge labeled by y, the initial vertex g of e has normal form ~
and the terminal vertex has normal form ', the vectors of cumulative z-exponents
are s(y) = (Sn,---,0) and s(7') = (sl,,...,s;), and the cutoff points are m := m(7)
and m' :=m/ ().

4.1. Size sequence of an edge. In this subsection we define the size sequence of
a directed edge e of the Cayley graph I' of Thompson’s group F' that does not lie in
the tree T' determined by the set N of normal forms.

We begin by showing that, not surprisingly, the ¥-rewritings corresponding to pairs
of inverse edges are closely related.

Lemma 4.1. We have m = m' and the sequence of y-rule sizes used in the rewriting of

vy is the same (including the order) as the sequence of y~'-rule sizes in the rewriting
1

of Yy~
Proof. From Table 1 we have sj, = s, +1>1+1=2 for k=0,...,m — 1, and so
m’ > m. Similarly, from Table 2 we have s, = s, —1>2—-1=1fork=0,...,m'—1,
and so m > m’. Hence m = m/. We see from Lemma 3.3 that the sizes of the y~!-
rules used in the standard Y-rewriting of 7'y =1 to ~y are, for k = 0,...,m — 1 (thus,
in order in which they are used), s, — 1 = sy, agreeing with the ordered list of sizes

in the rewritings from vy to 4" in Lemma 3.1. U
We define the size sequence of the edge e labeled by y to be the sequence
0'(6) = (S(], e Sm—l)

of y-rule sizes used to “cross” the edge e, that is, to rewrite vy to 7. Note that
both the length m(~y) of this sequence, denoted from now on also by m(e), and its
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members can be easily “read” from the z-exponents of the normal form of the vertex
g = e_. Similarly, we define the size sequence of the edge e~! labeled by y~! to be
the sequence
ole)=(sh—1,...,8, ,—1)

of y~!-rule sizes used to “cross” the edge e~* that is, to rewrite v'y~! to . Note that
both the length m/(y’) of this sequence, denoted from now on also by m(e™!), and its
members can be easily “read” from the z-exponents of the normal form of the vertex
g = (e71)_. Moreover, by Lemma 4.1, these two sequences coincide, that is, they
have the same length m(e) = m(e™!) and exactly the same members o(e) = o(e™').
Therefore, the size sequence of an edge can be easily read from the vertex of either

end of the edge, by using either Table 1 or Table 2, as convenient and appropriate.

4.2. Weight and order on edges outside of the tree of normal forms. In this
subsection we define a well-founded strict partial order on the directed edges of the
Cayley graph I' of F over the generating set A = {z*!, y*'}. A well-founded strict
partial order is a strict partial order for which there is no infinite descending chain;
such orders are useful in proving termination of (prefix-)rewriting systems.

The order will be defined by simply using a weight function on the edges. The
weight function uses the size sequence of the edge and the following sequence.

Let C be the sequence of positive integers defined recursively by

c@) =1,

c2) =1,

C(i) = C(i — 1) +20(i — 2) + 2, for i > 3.
The members of the sequence are explicitly given by

, 2 ., 2 ;

Cli) =52 = (-1 ~ 1,
but the only important features of the sequence C' for our purposes are that it is
nondecreasing sequence of positive integers such that C(i) > C'(i — 1) + C(1) for all
1 > 3. Of course, formally speaking, this means that we could have chosen another,
perhaps simpler, sequence than C' to define the weights, but we have chosen C' because
it actually has meaningful interpretation within our problem, described further in
Section 5.

Definition 4.2 (Edge weight). Let e be a directed edge in I' that is not on the normal
form tree T, with size sequence o(e) = (s, - .., Sm_1) of length m = m(e). The weight
W (e) of the edge e is the positive integer

W(e) = C(sg).

Definition 4.3 (Edge order). We define a strict partial order on the set of edges not
on the normal form tree by

e<e — W) <W().
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The relation < defined above is indeed a well-founded strict partial order, since the
relation < on the natural numbers is a well-founded strict partial order. Note also
that Lemma 4.1 shows that W (e) = W (e™!) for any edge e.

5. INTERLUDE: MOTIVATION FOR THE DEFINITION OF THE WEIGHT FUNCTION

In this section we give a pictorial, diagrammatic motivation for the weight function
defined in Section 4.2. We note that the rest of the paper, including the proof of
Theorem 1.1 in Section 6, does not require the material in this section; this section
is provided to explain how the proof came about.

5.1. Background on van Kampen diagrams. Let P = (A | R) be a presentation
for a group G, with the generating set A closed under inversion. Let w € A* be an
arbitrary word that represents the trivial element 1 of G. A van Kampen diagram
A for w with respect to P is a finite, planar, contractible combinatorial 2-complex
with edges directed and labeled by elements of A, satisfying the properties that the
boundary of A is an edge path labeled by the word w starting at a basepoint vertex
x and reading counterclockwise, and every 2-cell in A has boundary labeled by an
element of R.

Since w =¢ 1, there is a factorization of w in the free group F'(A) as a product of
conjugates of elements of the relator set R. Such a factorization gives rise to a van
Kampen diagram for w, with the same number of 2-cells as factors. In general, there
may be many different van Kampen diagrams for the word w.

See for example [2] or [16] for an exposition of the theory of van Kampen diagrams.

5.2. Filled box diagrams for Thompson’s group F'. We consider the generating
set A = {a*! y*'} of F, and construct van Kampen diagrams using two presentations
of F' with this generating set, namely

P o= (A]ly, oy, [y, a*ya?),
Po= (Al{ly,a'yx" i > 1))

As in previous sections, let e be a directed edge, with label y, in the Cayley graph

[' = I'4(F) that does not lie in the tree T" determined by the normal form set A. Let
v :=nf(e_) = ainyr . gty frgto

and 7' := nf(ey). The vector of cumulative x-exponents for v is s(y) = (sn, ..., So),

the cutoff point is m := m(v), and the size sequence is o(e) = (So, ..., Sm-1).

Consider the word z = z(e) := yy(7/) "' in A*, where ( )~! denotes a formal inverse.
The word z represents the identity element of F', and so for each of the presentations
of F' with generating set A, there is a van Kampen diagram for z. We describe a
procedure for building a specific van Kampen diagram A, for z with respect to the
presentation P as follows.

First we use the analysis in Section 3.1 to build a van Kampen diagram A’ for z over
the presentation P’. Each of the m phases of the standard Y-rewriting from the word
~y to the word +/ consists of applying a single defining relation from the presentation
P’. In particular, for 0 < k& < m — 1, the relation applied is [y, z°*yz~%~1]. We
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draw the 2-cell for this relation as a rectangle, with top and bottom labeled y+!
and pointing to the right, with left and right sides labeled x**yz~**~! and oriented
from bottom to top. The diagram A’ consists of a 1-dimensional edge path for
a common prefix of vy and 7/, together with these m rectangles, or “boxes”, in a
horizontal sequence with the right side of the k-th 2-cell attached to the left side of
the (k — 1)-th 2-cell along the vertical y edges, also gluing as many x and z~' edges
as possible along the two vertical sides. An illustration of the diagram A’ in the case
that v = 22y tay 'z 2yx? is given in Figure 1.

<y

y
J x4 X ¥ Z Y x2 x5
+ x3 Y Y %3 +
AY Y A AY v A
-+ XZAN A X2 o
3 <=
A X v < A y A x2 x4 N
< J
A %2 g
[ ]
*

FIGURE 1. A/ with v = 2%y loy o ?ya!

Next we build an iterative procedure for filling a rectangular 2-cell labeled by a
relator of the presentation P’ with a van Kampen diagram over the presentation P.
Any rectangular box labeled by the relator [y, z'yz~""!| with i € {1,2} of P’ is also
a 2-cell labeled by a relator of P, and so is left unchanged. For any ¢ > 3, the
rectangular box labeled by the relator [y, z'yz~""!] can be filled using two 2-cells with
boundary labels [y, zyz 2], two copies of the van Kampen diagram over P for the
word [y, 77 2yx~(=2~1] and one copy of the van Kampen diagram over P for the
word [y, 27 yz~=D=1]; see Figure 2 for an illustration of the resulting van Kampen
diagram over P for the word [y, z'yz=""1].

Finally, the van Kampen diagram A, for the word z = yy(7/)~! is obtained from
the diagram A’ by replacing each 2-cell with the van Kampen diagram over the
presentation P built by this iterative procedure. We refer to the diagram A, as the
filled box diagram for the edge e.

We next count the number of 2-cells in the filled box diagram A, for e. Note that
this box diagram may not be reduced; that is, there may be adjacent 2-cells in A,
that are labeled by the same relator with opposite orientations. Hence we may not
have a van Kampen diagram of minimal possible area (number of 2-cells) for the word
z; we simply have a diagram that is built in a canonical way.

For all i > 1, let C(i) denote the number of 2-cells in the van Kampen diagram
over P for the word [y, z'yz~""!] built by our iterative procedure. Then C(1) = 1,
C(2) = 1, and for all i« > 3 we have C(i) = C(i — 1) + 2C(i — 2) + 2. That is, the
numbers C'(i) give the sequence of positive integers defined in Section 4.2. Now the
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y€
NE Xt
y X2 v 2 y
X2 x2 X2 X2
y y y y
X X X X
x' 2 i-2
Xi_l y y€ X y XI 1
ye

FIGURE 2. Van Kampen diagram for the relator [y, x'yz "] with ¢ > 3

number of 2-cells in the filled box diagram A, associated to the edge e is the sum of
the numbers of 2-cells from presentation P that are used to fill the rectangles in the
diagram A’; that is, the number of 2-cells in the filled box diagram A, is

[y

m—

(j(sk)>

k=0

which is our definition of the weight of e in Section 4.2.

6. THOMPSON’S GROUP [’ IS AUTOSTACKABLE

In this final section we prove that Thompson’s group F' is autostackable. As in
earlier sections, let I' be the Cayley graph of Thompson’s group F with respect to
the generating set A = {z*!, y*!} and let T be the tree associated to the set A/ of
normal forms from Guba and Sapir’s rewriting system ¥ (described in Section 2.2).

We define a flow function ®: E — P as follows. Let e be a directed edge of I'. If e
lies on 7', then ®(e) := e. Otherwise, by Lemma 2.3, we have e = e, ,» with

v=pyz €N,

where b, e € {1,—1}, and vy* ¢ N. In this case, we define ®(e) to be the directed
path starting at e_ labeled by

ety oy 2y’ ifhb=1andi>2
label(®(e)) iy wlyrT Tyt ifb=1and 1< <2
[ =
a2y aty ey ifb=—-1landi>3

iy~ ety eyt if b= —1and 2 <i < 3.

Note that the image of every directed edge e of I' is a directed path from e_ to e,.
Hence the property of fixing the tree in the definition of flow function holds for the
map .
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Next we show that the termination property holds for ®, in order to complete the
proof that ® is a flow function. To do this, we use the well-founded strict partial
order < defined in Section 4. In particular, it suffices to prove the claim:

(%) For every pair of directed edges e, e’ in T' such that e is not in T and €' is in
the path ®(e), either €' lies in the tree T, or ¢’ < e.

To begin the proof of this claim, we note that for each edge e we have ®(e™!) =
d(e)~!, and every edge has the same weight as its inverse. Hence it suffices to prove
this claim for any edge e (not in 7') of the form e = e, .

Let g be the element of F' with ¢ =p e_, and write the normal form ~ := nf(g)
(using Lemma 2.3) in the form

= xznyen L. leyell,zo — pyslxm’

where each ¢; € {1,—1}, n > 1, and iy > 1. Let ¢’ =p e;, and (again using
Lemma 2.3) write the normal form + := nf(¢’) in the form

7’ — :Ej”’yanl .. leyﬂzjo _ p’yflxjo’
where each ¢; € {1, -1}, n’ > 1, and j, > 2.
Note also that Lemma 2.3 says that all edges in the path ®(e) labeled x or x~
are in the tree 7. We consider the three other edges in ®(e) labeled y or y =1, in two
cases.

Case 1. Suppose that 1 < ig < 2.

The first y=! edge on ®(e), namely €pye1 y—1, 18 the inverse of an edge on the normal
form path in I" starting at 1 and labeled by 7, and hence is in the normal form tree
T.

A similar situation occurs for the third y*! edge on ®(e): Since m(e) > 1, Lemma 3.1
shows that the normal form 7' = p'y127° labeling the path in I" from 1 to e, satisfies
Jo =19+ 1 and ; = €;. Thus the third y*!' edge on ®(e) is e, 1, which lies on the
path labeled + in T

Finally we consider the second y*! edge ¢’ on ®(e). This edge has label y and its
initial vertex ¢/ =p pz® has normal form ™y ---y<2z % If this edge is not in
the tree, then Lemma 2.3 says that n > 2 and i; + ig > 1. Now the size sequence of
e iso(e)=(s1,...,8m-1), and so W(e') < W (e); hence ¢ < e.

1

Case I1. Suppose that ig > 3.

The function ® replaces the edge e by the path from ¢ to ¢’ of length 9 labeled
by &ty lzyr~2yx?. For easier discussion, consider the diagram in Figure 3. In that
diagram, all dotted, double-tip edges, that is, the edges e, ey, e, and e3, are labeled
by y and all other edges by x. The path ®(e) connects g to ¢’ by using the shortest
path in the diagram, consisting of 9 edges, that does not use the edge e (thus, it uses
the edges e; ', es, and es, along with 6 2*'-edges which (as already noted above) are
in the normal form tree 7).

Lemma 6.1. None of the edges e]*, es, and es is in the normal form tree, and each

has weight strictly smaller than the weight of e.
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f . — @ > @ <—— @ <—— .
e1 " es
Y Y
[ [ [ ] e - é->-> [ ] [ [ ] [ ] [
gzt g g g'z=?
FIGURE 3. e and ®(e) when ig > 3
Proof. Let s(y) = (S, ..., S0) be the sequence of partial sums of the z-exponents in

v, and let m := m(e) = min{k | s, < 0}. Denote f := gz~'y~! and h := fzr =5
gr~'y~'z. Note that
nf((gz™")) = aly -yt

Since ip — 1 > 2, the edge €] ' is not on the normal form tree. But this means that
the normal form of f ends with at least one z (in fact, exactly ig — 2 according to
Lemma 3.3) and the normal form of h ends with at least two (in fact iy — 1), which
implies that e, is not on the normal form tree. The normal form of ¢’ ends with at
least 4 letters = (Lemma 3.1 says ¢’ ends with exactly ip + 1), which implies that
g'z™% ends with at least 2 (exactly ig — 1), and so ez is not on the normal form tree
either.

We have

my :=m(e;") = m/(nf(gz™")) = min{k | i +---+ (ip — 1) <1} = min{k | s;, < 2}

when the set is nonempty and, otherwise, m; = n. Hence m; < m. Now the vector
s(nf(gz™')) of cumulative z-exponents is s(nf(gz~!)) = (s, — 1,...,50 — 1), and so
Lemmas 3.3 and 4.1 say that the sequence of rule sizes associated to the edge e; is
oler) = oler) = (50— 2, ., Smy—1 — 2). Now 59 = ig > 3 (since we are in Case II),
and so m; > 1; moreover, for each k£ = 0,...,m; — 1 we have s > 3. Using the fact
that C' is a nondecreasing sequence of positive integers (for the inequalities) and the
recurrence relation defining C' (in the last equality) yields

W(e) —W(e) = ZC’ chz—z Z[C( k) — C’(sk—2)]+z_0(sk)

>

Q

(80) —0(80—2) :C(So—l)+C(SO—2>+2>0

Therefore W (e) > W(ey).

By using Table 2 we can calculate the cumulative z-exponents vector s(f) directly
from the cumulative z-exponents vector s(gx~!), and from there we compute the
cumulative z-exponents vector s(h) simply by adding 1 in each coordinate of s(f).
Partial results are given in Table 3 (with the no y~!-cancellation case on the left and
the y~!-cancellation case on the right); the cancellation cases in that table refer to
crossing the edge e;!, that is multiplying gz~ by y~'.
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k s(f)k s(he | s(g)k

0 S0 — 2 s0— 1 S0 k () s(h)k $(9)x

1 $1—2 51— 1 s1 0 S0 — 2 so — 1 50
1 S1 — 2 S1 — 1 S1

my — 1 Smi—1 — 2 Smi—1 — 1 Smi—1
my 0 1 Smy

my+ 1| Sm —1 S, Smy+1 mi | Smitr — L Smipa Smy
mi+ 1| Smpe— 1] Smt2 | Smitt

my — 1| Sm-1—2|8Sm—1—1]5mn-1

mi+2 | Smir1— 1| Smyg1 | Smit2

m— 2 Sm—1 — 1 Sm—1 Sm—2

m—1 Sm — 1 Sm Sm—1
m Sm—1— 1 Sm—1 Sm m Sm
m+1 Sm — 1 Sm

TABLE 3. Cumulative z-exponents of f, h, and ¢g: the no y -
cancellation case (left) and the y~'-cancellation case (right)

We claim that, in each s(h); and s(¢)x column in Table 3, the boldface entry is the
first nonpositive entry. For g this is immediate from the definition of the cutoff point
m(g) = m. For k = 0,...,m; — 1, by the definition of m;, we have s, > 3, which
implies that s(h), = s — 1 > 2. By the definition of m, we also have that s, > 1 for
k < m—1 and this completes our claim. Note that we just proved that m(h) = m+1
in the no y~! cancellation case, and m(h) = m — 1 in the y~!-cancellation case.

Since the cumulative z-exponents of g and h before the index m = m(g) and m(h),
respectively, represent the rule sizes associated to the edges e and ey, we again use
them to compare weights. In particular, the difference in weights W (e) —W (ez) is the
difference between the sum of the entries in the sequence C' (defined in Section 4.2)
with indices in the s(g), column before m(g) and the sum of the C' sequence entries
with indices in the s(h); column before m(h); hence entries appearing in both columns
will cancel. In more detail, in the no y~! cancellation case we have

-1 m(h)—1
W(e)=W(e) = > C( C(s
k=0 (=0
Clsk = D]+ Clsm,) —C(1) + Y [Clsk) = Clsp-1)] = Clsm1)
- 12 T
> C(So)—o(0—1)—1:20(80—2)+2—1>0

3

M

S =

where in the inequalities we used that C is a nondecreasing sequence of positive
integers, and between the two inequalities we apply the recurrence relation defining
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1

the sequence C'. A similar telescoping sum occurs in the y~" cancellation case, yielding

mi1—1

Wi(e) —W(ey) = Z [C(sk) — C(sg — 1)] 4+ C(sm,) = C(sg) — C(sop— 1) > 0.
k=0

Therefore W(e) > W(es).

Finally, since ig > 3, Lemma 3.1 says that the normal form nf(¢’) has a suffix 27
with jo > 4, and so the normal form nf(g’z~2) is obtained by removing an z? suffix
from nf(g’). Hence s(g'z72)r = s(g')x—2 for all k, and so m(e3) < m(e). Then the size
sequence o(e) contains at least as many entries as o(e3), and has larger corresponding
entries. Therefore W(e) > W (es).

This completes the proof of Case Il and Lemma 6.1. U

This also completes the proof of the claim (%) (on page 17). Therefore the function
® satisfies the termination property and is a flow function for Thompson’s group F'.
This flow function is bounded, with bounding constant K = 13.

It remains to show that the set graph (®) is a regular language. For the flow function
®, this graph is

graph (®) = Ugea {(u,a,a) [ua € N orue (NNAa")}
U (Uee{l,—1} Uieq1,2} {(uyezi, y, oy T Ty ) | uyfat € N})
U (UEE{L_l} Uieg2,3} {(uyexi, y oy 2ty e ) | uytat € N})
U{(uz,y,z 'y teyzyz®) | u e NN (A'y™'A%?)}
U{(uz?,y a2y 2Py e yr) [u e NN (A*yilA*x2)}
= Uiea NoU VN A™)) x {a} x {a}
U (Ueegr,o1y Useguy V1 A0) x g} x {a-iy~<aiyatya )
U (Ueeqr, 13 Uieqay (N N A™y2") x {y™'} x {7y ™2y la™ Ty’ ™))
U (NN Ay A 2%)) x {y} x {a7 'y aya*ya®}
U NN Ay A ) x {y '} x {a 7%y 2y ey

Since the language N is regular, Lemma 2.1 says that the quotient language N, is
also regular. Now closure of the class of regular languages under union, intersection,
concatenation, etc., shows that the left factor in each triple is a regular language.
Since any set consisting of a single word is also regular, Lemma 2.1 shows that each
of the above products of three regular languages is also regular. Finally, closure under
union again shows that graph (®) is regular.

Therefore ® is a regular bounded flow function, and so Thompson’s group F' is
autostackable. The prefix-rewriting system in the statement of Theorem 1.1 is the
system associated to the flow function ®, and hence is convergent. This completes
the proof of Theorem 1.1.
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