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Question of the Day

What is the solution method for the Cauchy-Euler type of ordinary differen-
tial equation:

x2 d
2v

dx2
+ ax

dv

dx
+ bv = 0 ?

Key Concepts

1. We solve the Black-Scholes equation for the value of a European call
option on a security by judicious changes of variables that reduce the
equation to the heat equation. The heat equation has a solution for-
mula. Using the solution formula with the changes of variables gives
the solution to the Black-Scholes equation.

2. Solving the Black-Scholes equation is an example of how to choose and
execute changes of variables to solve a partial differential equation.

Vocabulary

1. A differential equation with auxiliary initial conditions and boundary
conditions, that is an initial value problem, is said to be well-posed
if the solution exists, is unique, and small changes in the equation
parameters, the initial conditions or the boundary conditions produce
only small changes in the solutions.
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Mathematical Ideas

Conditions for Solution of the Black-Scholes Equation

We have to start somewhere, and to avoid the problem of deriving everything
back to calculus, we will assert that the initial value problem for the heat
equation on the real line is well-posed. That is, consider the solution to the
partial differential equation

∂u

∂τ
=
∂2u

∂x2
−∞ < x <∞, τ > 0.

We will take the initial condition

u(x, 0) = u0(x).

We will assume the initial condition and the solution satisfy the following
technical requirements:

1. u0(x) has no more than a finite number of discontinuities of the jump
kind,

2. lim|x|→∞ u0(x)e−ax
2

= 0 for any a > 0,

3. lim|x|→∞ u(x, τ)e−ax
2

= 0 for any a > 0.

Under these mild assumptions, the solution exists for all time and is unique.
Most importantly, the solution is represented as

u(x, τ) =
1

2
√
πτ

∫ ∞
−∞

u0(s)e
−(x−s)2/4τ ds

Remark. This solution can derived in several different ways, the easiest way
is to use Fourier transforms. The derivation of this solution representation
is standard in any course or book on partial differential equations.
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Remark. Mathematically, the conditions above are unnecessarily restrictive,
and can be considerably weakened. However, they will be more than sufficient
for all practical situations we encounter in mathematical finance.

Remark. The use of τ for the time variable (instead of the more natural t)
is to avoid a conflict of notation in the several changes of variables we will
soon have to make.

The Black-Scholes terminal value problem for the value V (S, t) of a Eu-
ropean call option on a security with price S at time t is

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

with V (0, t) = 0, V (S, t) ∼ S as S →∞ and

V (S, T ) = max(S −K, 0).

Note that this looks a little like the heat equation on the infinite interval
in that it has a first derivative of the unknown with respect to time and the
second derivative of the unknown with respect to the other (space) variable.
On the other hand, notice:

1. Each time the unknown is differentiated with respect to S, it also mul-
tiplied by the independent variable S, so the equation is not a constant
coefficient equation.

2. There is a first derivative of V with respect to S in the equation.

3. There is a zero-th order term V in the equation.

4. The sign on the second derivative is the opposite of the heat equation
form, so the equation is of backward parabolic form.

5. The data of the problem is given at the final time T instead of the initial
time 0, consistent with the backward parabolic form of the equation.

6. There is a boundary condition V (0, t) = 0 specifying the value of the
solution at one sensible boundary of the problem. The boundary is sen-
sible since security values must only be zero or positive. This boundary
condition says that any time the security value is 0, then the call value
(with strike price K) is also worth 0.
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7. There is another boundary condition V (S, t) ∼ S, as S → ∞, but
although this is financially sensible, (it says that for very large security
prices, the call value with strike price K is approximately S) it is more
in the nature of a technical condition, and we will ignore it without
consequence.

We eliminate each objection with a suitable change of variables. The plan
is to change variables to reduce the Black-Scholes terminal value problem to
the heat equation, then to use the known solution of the heat equation to
represent the solution, and finally change variables back. This is a standard
solution technique in partial differential equations. All the transformations
are standard, well-motivated, and well known.

Solution of the Black-Scholes Equation

First we take t = T − τ
(1/2)σ2 and S = Kex, and we set

V (S, t) = Kv(x, τ).

Remember, σ is the volatility, r is the interest rate on a risk-free bond, and
K is the strike price. In the changes of variables above, the choice for t
reverses the sense of time, changing the problem from backward parabolic
to forward parabolic. The choice for S is a well-known transformation based
on experience with the Euler equidimensional equation in differential equa-
tions. In addition, the variables have been carefully scaled so as to make
the transformed equation expressed in dimensionless quantities. All of these
techniques are standard and are covered in most courses and books on partial
differential equations and applied mathematics.

Some extremely wise advice adapted from Stochastic Calculus and Fi-
nancial Applications by J. Michael Steele, [1, page 186], is appropriate here.

“There is nothing particularly difficult about changing vari-
ables and transforming one equation to another, but there is an
element of tedium and complexity that slows us down. There is
no universal remedy for this molasses effect, but the calculations
do seem to go more quickly if one follows a well-defined plan. If
we know that V (S, t) satisfies an equation (like the Black-Scholes
equation) we are guaranteed that we can make good use of the
equation in the derivation of the equation for a new function
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v(x, τ) defined in terms of the old if we write the old V as a func-
tion of the new v and write the new τ and x as functions of the
old t and S. This order of things puts everything in the direct
line of fire of the chain rule; the partial derivatives Vt, VS and VSS
are easy to compute and at the end, the original equation stands
ready for immediate use.”

Following the advice, write

τ = (1/2)σ2(T − t)

and

x = log

(
S

K

)
.

The first derivatives are

∂V

∂t
= K

∂v

∂τ
· dτ
dt

= K
∂v

∂τ
· −σ

2

2

and
∂V

∂S
= K

∂v

∂x
· dx
dS

= K
∂v

∂x
· 1

S
.

The second derivative is

∂2V

∂S2
=

∂

∂S

(
∂V

∂S

)
=

∂

∂S

(
K
∂v

∂x

1

S

)
= K

∂v

∂x
· −1

S2
+K

∂

∂S

(
∂v

∂x

)
· 1

S

= K
∂v

∂x
· −1

S2
+K

∂

∂x

(
∂v

∂x

)
· dx
dS
· 1

S

= K
∂v

∂x
· −1

S2
+K

∂2v

∂x2
· 1

S2
.

The terminal condition is

V (S, T ) = max(S −K, 0) = max(Kex −K, 0)

but V (S, T ) = Kv(x, 0) so v(x, 0) = max(ex − 1, 0).
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Now substitute all of the derivatives into the Black-Scholes equation to
obtain:

K
∂v

∂τ
· −σ

2

2
+
σ2

2
S2

(
K
∂v

∂x
· −1

S2
+K

∂2v

∂x2
· 1

S2

)
+ rS

(
K
∂v

∂x
· 1

S

)
− rKv = 0.

Now begin the simplification:

1. Isolate the common factor K and cancel.

2. Transpose the τ -derivative to the other side, and divide through by
σ2/2

3. Rename the remaining constant r/(σ2/2) as k. k measures the ratio
between the risk-free interest rate and the volatility.

4. Cancel the S2 terms in the second derivative.

5. Cancel the S terms in the first derivative.

6. Gather up like order terms.

What remains is the rescaled, constant coefficient equation:

∂v

∂τ
=
∂2v

∂x2
+ (k − 1)

∂v

∂x
− kv.

We have made considerable progress, because

1. Now there is only one dimensionless parameter k measuring the risk-
free interest rate as a multiple of the volatility and a rescaled time to
expiry (1/2)σ2T , not the original 4 dimensioned quantities K, T , σ2

and r.

2. The equation is defined on the interval −∞ < x < ∞, since this x-
interval defines 0 < S <∞ through the change of variables S = Kex.

3. The equation now has constant coefficients.

In principle, we could now solve the equation directly.
Instead, we will simplify further by changing the dependent variable scale

yet again, by
v = eαx+βτu(x, τ)
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where α and β are yet to be determined. Using the product rule:

vτ = βeαx+βτu+ eαx+βτuτ

and
vx = αeαx+βτu+ eαx+βτux

and
vxx = α2eαx+βτu+ 2αeαx+βτux + eαx+βτuxx.

Put these into our constant coefficient partial differential equation, cancel
the common factor of eαx+βτ throughout and obtain:

βu+ uτ = α2u+ 2αux + uxx + (k − 1)(αu+ ux)− ku

Gather like terms:

uτ = uxx + [2α + (k − 1)]ux + [α2 + (k − 1)α− k − β]u.

Choose α = −(k − 1)/2 so that the ux coefficient is 0, and then choose
β = α2 + (k − 1)α− k = −(k + 1)2/4 so the u coefficient is likewise 0. With
this choice, the equation is reduced to

uτ = uxx.

We need to transform the initial condition too. This transformation is

u(x, 0) = e−(−(k−1)/2)x−(−(k+1)2/4)·0v(x, 0)

= e((k−1)/2)x max(ex − 1, 0)

= max
(
e((k+1)/2)x − e((k−1)/2)x, 0

)
.

For future reference, we notice that this function is strictly positive when
the argument x is strictly positive, that is u0(x) > 0 when x > 0, otherwise,
u0(x) = 0 for x ≤ 0.

We are in the final stage since we are ready to apply the heat-equation
solution representation formula:

u(x, τ) =
1

2
√
πτ

∫ ∞
−∞

u0(s)e
−(x−s)2/4τ ds.
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However, first we want to make a change of variable in the integration, by
taking z = (s− x) /

√
2τ , (and thereby dz = (−1/

√
2τ) dx) so that the inte-

gration becomes:

u(x, τ) =
1√
2π

∫ ∞
−∞

u0

(
z
√

2τ + x
)
e−z

2/2 dz.

We may as well only integrate over the domain where u0 > 0, that is for

z > −x/
√

2τ . On that domain, u0 = e((k+1)/2)·(x+z
√

2τ)− e((k−1)/2)·(x+z
√

2τ) so
we are down to:

1√
2π

∫ ∞
−x/
√

2τ

e
k+1
2 (x+z

√
2τ)e−z

2/2 dz − 1√
2π

∫ ∞
−x/
√

2τ

e
k−1
2 (x+z

√
2τ)e−z

2/2 dz

Call the two integrals I1 and I2 respectively.
We will evaluate I1 ( the one with the k + 1 term) first. This is easy,

completing the square in the exponent yields a standard, tabulated integral.
The exponent is

((k + 1) /2)
(
x+ z

√
2τ
)
− z2/2 = (−1/2)

(
z2 −

√
2τ (k + 1) z

)
+ ((k + 1) /2)x

= (−1/2)
(
z2 −

√
2τ (k + 1) z + τ (k + 1)2 /2

)
+ ((k + 1) /2)x+ τ (k + 1)2 /4

= (−1/2)
(
z −

√
τ/2 (k + 1)

)2

+ (k + 1)x/2 + τ (k + 1)2 /4.

Therefore

1√
2π

∫ ∞
−x/
√

2τ

e
k+1
2 (x+z

√
2τ)e−z

2/2 dz =
e(k+1)x/2+τ(k+1)2/4

√
2π

∫ ∞
−x/
√

2τ

e
−1
2

“
z−
√
τ/2(k+1)

”2

dz.

Now, change variables again on the integral, choosing y = z −
√
τ/2 (k + 1)

so dy = dz, and all we need to change are the limits of integration:

e(k+1)x/2+τ(k+1)2/4

√
2π

∫ ∞
−x/
√

2τ−
√
τ/2(k+1)

e(−1/2)y2 dz.

The integral can be represented in terms of the cumulative distribution func-
tion of a normal random variable, usually denoted Φ. That is,

Φ(d) = (1/
√

2π)

∫ d

−∞
e−y

2/2 dy
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so
I1 = e(k+1)x/2+τ(k+1)2/4Φ(d1)

where d1 = x/
√

2τ +
√
τ/2 (k + 1). Note the use of the symmetry of the

integral! The calculation of I2 is identical, except that (k + 1) is replaced by
(k − 1) throughout.

The solution of the transformed heat equation initial value problem is

u(x, τ) = e(k+1)x/2+τ(k+1)2/4Φ(d1)− e(k−1)x/2+τ(k−1)2/4Φ(d2)

where d1 = x/
√

2τ +
√
τ/2 (k + 1) and d2 = x/

√
2τ +

√
τ/2 (k − 1) .

Now we must systematically unwind each of the changes of variables,
from u. First, v(x, τ) = e(−1/2)(k−1)x−(1/4)(k+1)2τu(x, τ). Notice how many
of the exponentials neatly combine and cancel! Next put x = log (S/K),
τ = (1/2)σ2(T − t) and V (S, t) = Kv(x, τ).

The final solution is the Black-Scholes formula for the value of a European
call option at time T with strike price K, if the current time is t and the
underlying security price is S, the risk-free interest rate is r and the volatility
is σ:

V (S, t) = SΦ

(
log(S/K) + (r + σ2/2)(T − t)

σ
√
T − t

)
−Ke−r(T−t)Φ

(
log(S/K) + (r − σ2/2)(T − t)

σ
√
T − t

)
.

Usually one doesn’t see the solution as this full closed form solution. Most
versions of the solution write intermediate steps in small pieces, and then
present the solution as an algorithm putting the pieces together to obtain
the final answer. Specifically, let

d1 =
log(S/K) + (r + σ2/2)(T − t)

σ
√
T − t

d2 =
log(S/K) + (r − σ2/2)(T − t)

σ
√
T − t

so that
VC(S, t) = S · Φ (d1)−Ke−r(T−t) · Φ (d2) .
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Solution of the Black-Scholes Equation Graphically

Consider for purposes of graphical illustration the value of a call option with
strike price K = 100. The risk-free interest rate per year, continuously
compounded is 12%, so r = 0.12, the time to expiration is T = 1 measured
in years, and the standard deviation per year on the return of the stock, or
the volatility is σ = 0.10. The value of the call option at maturity plotted
over a range of stock prices 70 ≤ S ≤ 130 surrounding the strike price is
illustrated in 1

We use the Black-Scholes formula above to compute the value of the
option prior to expiration. With the same parameters as above the value
of the call option is plotted over a range of stock prices 70 ≤ S ≤ 130 at
time remaining to expiration t = 1 (red), t = 0.8, (orange), t = 0.6 (yellow),
t = 0.4 (green), t = 0.2 (blue) and at expiration t = 0 (black).

Using this graph notice two trends in the option value:

1. For a fixed time, as the stock price increases the option value increases,

2. As the time to expiration decreases, for a fixed stock value price the
value of the option decreases to the value at expiration.

We predicted both trends from our intuitive analysis of options. The Black-
Scholes option pricing formula makes the intuition precise.

We can also plot the solution of the Black-Scholes equation as a function
of security price and the time to expiration as value surface:

This value surface shows both trends.

Sources

This discussion is drawn from Section 4.2, pages 59–63; Section 4.3, pages
66–69; Section 5.3, pages 75–76; and Section 5.4, pages 77–81 of The Math-
ematics of Financial Derivatives: A Student Introduction by P. Wilmott, S.
Howison, J. Dewynne, Cambridge University Press, Cambridge, 1995. Some
ideas are also taken from Chapter 11 of Stochastic Calculus and Financial
Applications by J. Michael Steele, Springer, New York, 2001.
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Figure 1: Value of the call option at maturity
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Figure 2: Value of the call option at various times
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Figure 3: Value surface from the Black-Scholes formula
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Problems to Work for Understanding

1. Explicitly evaluate the integral I2 in terms of the c.d.f. Φ and other
elementary functions as was done for the integral I1.

2. What is the price of a European call option on a non-dividend-paying
stock when the stock price is $52, the strike price is $50, the risk-
free interest rate is 12% per annum (compounded continuously), the
volatility is 30% per annum, and the time to maturity is 3 months?

3. What is the price of a European call option on a non-dividend paying
stock when the stock price is $30, the exercise price is $29, the risk-free
interest rate is 5%, the volatility is 25% per annum, and the time to
maturity is 4 months?

4. Show that the Black-Scholes formula for the price of a call option tends
to max(S −K, 0) as t→ T .

Reading Suggestion:
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Outside Readings and Links:

1. Cornell University, Department of Computer Science, Prof. T. Cole-
man Rhodes and Prof. R. Jarrow. Numerical Solution of Black-Scholes
Equation, Submitted by Chun Fan, Nov. 12, 2002.

2. Monash University, Department of Mathematical Science, Eric. W.
Chu. This link gives some examples and maple commands, Submitted
by Chun Fan, Nov. 12, 2002.

3. An applet for calculating the option value. based on the Black-Scholes
model. Also contains tips on options, business news and literature on
options. Submitted by Yogesh Makkar, November 19, 2003.

4. ExcelEverywhere., a commercial application for spreadsheets on the
Web. A sample spreadsheet based calculator for calculating the option
values, based on Black-Scholes model. Submitted by Yogesh Makkar,
November 19,2003

I check all the information on each page for correctness and typographical
errors. Nevertheless, some errors may occur and I would be grateful if you would
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