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Question of the Day

What is the most important idea in the derivation of the binomial option
pricing model?

Key Concepts
1. The derivation of the Black-Scholes equation uses

(a) tools from calculus,
(b) the quadratic variation of Geometric Brownian Motion,

c¢) the no-arbitrage condition to evaluate growth of non-risky portfo-
g g
lios,

d) and a Simple but pI‘OfOU.Ild insight to eliminate the randomness or
g
risk.
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Vocabulary

1. A backward parabolic PDE is a partial differential equation of the
form V; + DV,, + ... = 0 with highest derivative terms in ¢ of order
1 and highest derivative terms x of order 2 respectively. Terminal
values V(S,T) at an end time ¢ = T must be satisfied in contrast to
the initial values at ¢ = 0 required by many problems in physics and
engineering.



2.

A terminal condition for a backward parabolic equation is the speci-
fication of a function at the end time of the interval of consideration to
uniquely determine the solution. It is analogous to an initial condition
for an ordinary differential equation, except that it occurs at the end
of the time interval, instead of the beginning.

Mathematical Ideas

Explicit Assumptions Made for Modeling and Deriva-

tion

For mathematical modeling of a market for a risky security we will ideally
assume

1.

D.

that a large number of identical, rational traders always have complete
information about all assets they are trading,

changes in prices are given by a continuous random variable with some
probability distribution,

. that trading transactions take negligible time,

. purchases and sales can be made in any amounts, that is, the stock and

bond are divisible, we can buy them in any amounts including negative
amounts (which are short positions),

the risky security issues no dividends.

The first assumption is the essence of what economists call the efficient
market hypothesis. The efficient market hypothesis leads to the second
assumption as a conclusion, called the random walk hypothesis. Another
version of the random walk hypothesis says that traders cannot predict the
direction of the market or the magnitude of the change in a stock so the



best predictor of the market value of a stock is the current price. We will
make the second assumption stronger and more precise by specifying the
probability distribution of the changes with a stochastic differential equation.
The remaining hypotheses are simplifying assumptions which can be relaxed
at the expense of more difficult mathematical modeling.

We wish to find the value V' of a derivative instrument based on an
underlying security which has value S. Mathematically, we assume

1. the price of the underlying security follows the stochastic differential
equation
dS =rSdt+ oS dW

or equivalently that S(t) is a Geometric Brownian Motion with param-
eters r — 02/2 and o,

2. the risk free interest rate r and the volatility o are constants,

3. the value V' of the derivative depends only on the current value of the
underlying security S and the time ¢, so we can write V(5,1),

4. All variables are real-valued, and all functions are sufficiently smooth
to justify necessary calculus operations.

The first assumption is a mathematical translation of a strong form of
the efficient market hypothesis from economics. It is a reasonable modeling
assumption but finer analysis strongly suggests that security prices have a
higher probability of large price swings than Geometric Brownian Motion
predicts. Therefore the first assumption is not supported by data. However,
it is useful since we have good analytic understanding of Geometric Brownian
Motion.

The second assumption is a reasonable assumption for a modeling attempt
although good evidence indicates neither interest rates nor the volatility are
constant. On reasonably short times scales, say a period of three months
for the lifetime of most options, the interest rate and the volatility are ap-
proximately constant. The third and fourth assumptions are mathematical
translations of the assumptions that securities can be bought and sold in
any amount and that trading times are negligible, so that standard tools of
mathematical analysis can be applied. Both assumptions are reasonable for
modern security trading.



Derivation of the Black-Scholes equation

We consider a simple derivative instrument, an option written on an under-
lying asset, say a stock that trades in the market at price S(t). A payoff
function A(S) determines the value of the option at expiration time 7'. For
t < T, the option value should depend on the underlying price S and the
time t. We denote the price as V(5,¢). So far all we know is the value at the
final time V (S, T) = A(S). We would like to know the value V(S,0) so that
we know an appropriate buying or selling price of the option.

As time passes, the value of the option changes, both because the ex-
piration date approaches and because the stock price changes. We assume
the option price changes smoothly in both the security price and the time.

Across a short time interval 6t we can write by the Taylor series expansion
of V' that:

SV = Vot + V,65 + %VSS@S)2 +...

The neglected terms are of order (6t)?, 656¢, and (65)* and higher. We rely
on our intuition from random walks and Brownian motion to explain why we
keep the terms of order (65)? but neglect the other terms. More about this
later.

To determine the price, we construct a replicating portfolio. This will
be a specific investment strategy involving only the stock and a cash account
that will yield exactly the same eventual payoff as the option in all possible
future scenarios. Its present value must therefore be the same as the present
value of the option and if we can determine one we can determine the other.
We thus define a portfolio II consisting of ¢(t) shares of stock and (¢) units
of the cash account B(t). The portfolio constantly changes in value as the
security price changes randomly and the cash account accumulates interest.

In a short time interval, we can take the changes in the portfolio to be

STL = $(£)0S + ¥(t)rB(t)st

since dB(t) ~ rB(t)dt, where r is the interest rate. This says that short-
time changes in the portfolio value are due only to changes in the security
price, and the interest growth of the cash account, and not to additions or
subtraction of the portfolio amounts. Any additions or subtractions are due
to subsequent reallocations financed through the changes in the components
themselves.



The difference in value between the two portfolios changes by
1
S(V —TI) = (V; = p(t)rB(t))6t + (Vs — p(t))dS + 51/55(55)2 +....

This could be considered to be a three-part portfolio consisting of an option,
and short-selling ¢ units of the security and v units of bonds.

Next come a couple of linked insights: As an initial insight we will elim-
inate the first order dependence on S by taking ¢(¢t) = Vs. Note that this
means the rate of change of the derivative value with respect to the security
value determines a policy for ¢(t). Looking carefully, we see that this pol-
icy removes the “randomness” from the equation for the difference in values!
(What looks like a little “trick” right here hides a world of probability theory.
This is really a Radon-Nikodym derivative that defines a change of measure
that transforms a diffusion, i.e. a transformed Brownian motion with drift,
to a standard Wiener measure.)

Second, since the difference portfolio is now non-risky, it must grow in
value at exactly the same rate as any risk-free bank account:

5(V —I0) = r(V — TI)st.

This insight is actually our now familiar no-arbitrage-possibility argument: If
(V' —1I) > r(V —1I)dt, then anyone could borrow money at rate r to acquire
the portfolio V' — II, holding the portfolio for a time ¢, and then selling
the portfolio, with the growth in the difference portfolio more than enough
to cover the interest costs on the loan. On the other hand if 6(V —II) <
r(V —1I)ot, then short-sell the option in the marketplace for V', purchase ¢(t)
shares of stock and loan the rest of the money out at rate r. The interest
growth of the money will more than cover the repayment of the difference
portfolio. Either way, the existence of risk-free profits to be made in the

market will drive the inequality to an equality.
So:

r(V =)ot = (V; — o (t)rB(t))dt + %VSS<5S)2~

Recall the quadratic variation of Geometric Brownian Motion is determinis-
tic, namely (65)? = 025(t)%dt,

F(V — D)5t = (V; — (#)rB(1))5¢ + %ﬁs?v“&.



Cancel the dt terms, and recall that V —II = V — ¢(t)S — ¢ (t)B(t), and
¢(t) = Vs, so that on the left (V —1II) = rV —rVgS —ry(t)B(t). The terms
—r(t)B(t) on left and right cancel, and we are left with the Black-Scholes
equation:

1
Vi + 50252\/55 +7rSVg —rV = 0.

Note that under the assumptions made for the purposes of the modeling
the partial differential equation depends only on the constant volatility o
and the constant risk-free interest rate r. This partial differential equation
(PDE) must be satisfied by the value of any derivative security depending
on the asset S.

Some comments about the PDE:

e The PDE is linear: Since the solution of the PDE is the worth of the
option, then two options are worth twice as much as one option, and a
portfolio consisting two different options has value equal to the sum of
the individual options.

e The PDE is backwards parabolic because of the form V;+(1/2)5%5? V.
Thus, terminal values V(S,T) (in contrast to the initial values re-
quired by many problems in physics and engineering) must be specified.
The value of a European option at expiration is known as a function of
the security price S, so we have a terminal value. The PDE is solved to
determine the value of the option at times before the expiration date.

Comment on the derivation:

The derivation above follows reasonably closely the original derivation of
Black, Scholes and Merton. Option prices can also be calculated and the
Black-Scholes equation derived by more advanced probabilistic methods. In
this equivalent formulation, the discounted price process exp(—rt)S(t) is
shifted into a “risk-free” measure using the Cameron-Martin-Girsanov The-
orem, so that it becomes a martingale. The option price V'(S,t) is then the
discounted expected value of the payoff A(¢) in this measure, and the PDE
is obtained as the backward evolution equation for the expectation. The
derivation above follows the classical derivation of Black and Scholes, but
the probabilistic view is more modern and can be more easily extended to
general market models.



The derivation of the Black-Scholes equation above uses the fairly intu-
itive partial derivative equation approach because of the simplicity of the
derivation. This derivation:

e is easily motivated and related to similar derivations of partial differ-
ential equations in physics and engineering,

e avoids the burden of developing additional probability theory and mea-
sure theory machinery, including filtrations, sigma-fields, previsibility,
and changes of measure including Radon-Nikodym derivatives and the
Cameron-Martin-Girsanov theorem.

e also avoids, or at least hides, martingale theory that we have not yet
developed or exploited,

e does depend on the stochastic process knowledge that we have gained
already, but not more than that knowledge!

The disadvantages are that:

e we are forced to skim certain details relying on motivation instead of
strict mathematical rigor,

e when we are done we still have to solve the partial differential equation
to get the price on the derivative, whereas the probabilistic methods de-
liver the solution almost automatically and give the partial differential
equation as an auxiliary by-product,

e the probabilistic view is more modern and can be more easily extended
to general market models.

Sources

This derivation of the Black-Scholes equation is drawn from “Financial Deriva-
tives and Partial Differential Equations” by Robert Almgren, in American
Mathematical Monthly, Volume 109, January, 2002, pages 1-11.
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Problems to Work for Understanding

1. Show by substitution that two exact solutions of the Black-Scholes
equations are

(a)
(b)

V(S,t) = AS, A some constant.
V(S,t) = Aexp(rt)

Explain in financial terms what each of these solutions represents. That
is, describe a simple “claim”, “derivative” or “option” for which this
solution to the Black Scholes equation gives the value of the claim at
any time.

2. Draw the expiry diagrams (that is, a graph of terminal condition of
portfolio value versus security price S) at the expiration time for the
portfolio which is

Short one share, long two calls with exercise price K. (This is
called a straddle .)

Long one call, and one put both exercise price K. (This is also
called a straddle.)

Long one call, and two puts, all with exercise price K. (This is
called a strip .)

Long one put, and two calls, all with exercise price K. (This is
called a strap .)

Long one call with exercise price K; and one put with exercise
price Ky. Compare the three cases when K; > K, (known as a
strangle), K; = K, and K; < K.

As before, but also short one call and one put with exercise price
K. (When K; < K < K, this is called a butterfly spread. )




Reading Suggestion:
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Outside Readings and Links:

1. Bradley University, School of Business Administration, Finance De-
partment, Kevin Rubash. A very brief description on the development
history of option theory and the Black-Scholes model for calculating
option value, with the notations, Greeks and some explanatory graphs.

Also contains a calculators for the option value calculation. Submitted
by Yogesh Makkar, November 19, 2003.
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