Topics in
Probability Theory and Stochastic Processes
Steven R. Dunbar

The Sum of Independent Normal Random Variables is Normal

Rating
Student: contains scenes of mild algebra or calculus that may require guidance.
Section Starter Question

What must be known to find the distribution of the sum if two normal random variables are not independent?

Key Concepts

1. We can prove that the sum of independent normal random variables is again normally distributed by using the rotational invariance of the bivariate normal distribution.

2. The Central Limit Theorem provides a heuristic explanation of why the sum of independent normal random variables is normally distributed.

Vocabulary

1. The bivariate normal distribution is

\[f(z_1, z_2) = \frac{\exp\left(-\frac{(z_1^2 + z_2^2)}{2}\right)}{2\pi}. \]

the joint density function of two independent standard random variables.
Mathematical Ideas

The proof that the sum of independent random variables is normal usually occurs in one of two forms. One is the direct proof using the fact that the distribution of the sum of independent random variables is the convolution of the distributions of the two independent random variables. The computation is tedious. The computation is also not illuminating about why the sum of independent normal variables is normal.

The second proof uses the fact that the moment generating function (mgf) of the sum of independent random variables is the product of the respective moment generating functions. After computing the mgf of a normal and taking the product of two mgfs, we see that the product is again the mgf of a normal random variable. Then the proof follows by using the uniqueness theorem for an mgf, that is, the fact that the moment generating function is uniquely determined by the distribution.

The rotation proof that a sum of independent normals is normal

This section is a summary, explanation, and review of the article by Eisenberg and Sullivan [2].

Lemma 1. X is normal with mean μ and variance σ^2 if and only if it can be written as $X = \mu + \sigma^2 Z$ where Z is standard normal with mean 0 and variance 1.

Proof. Left as an exercise.

Lemma 2. The joint density of two independent standard normal random variables is rotation invariant.

Proof. Take two independent standard normal random variables Z_1 and Z_2. Taking the product of the distributions, the joint density function of the two random variables is

$$f(z_1, z_2) = \frac{\exp\left(-\frac{z_1^2 + z_2^2}{2}
ight)}{2\pi}.$$

This distribution is rotationally invariant. This means that the function has the same value for all points equally distant from the origin. This is obvious algebraically from the form of the variables $z_1^2 + z_2^2$, or from the
Let X_1, X_2 be two independent normal random variables. Since for any random variables the mean of the sum is the sum of the means, we may as well take the independent random variables to have mean 0. So take X_1 to be normal with mean 0 and variance σ_1^2 and X_2 to be normal with 0 and variance σ_2^2. Now consider the distribution of the sum $X_1 + X_2$ which has the same distribution as $\sigma_1 Z_1 + \sigma_2 Z_2$. Apply Lemmas 2 to an arbitrary half-plane. Hence

$$\mathbb{P} \left[X_1 + X_2 \leq t \right] = \mathbb{P} \left[\sigma_1 Z_1 + \sigma_2 Z_2 \leq t \right] = \mathbb{P} \left[(Z_1, Z_2) \in A \right],$$

where the half-plane is $A = \{(z_1, z_2) | \sigma_1 z_1 + \sigma_2 z_2 \leq t \}$. The boundary line $\sigma_1 z_1 + \sigma_2 z_2 = t$ of the half-plane A lies at a distance $d = |t|/\sqrt{\sigma_1^2 + \sigma_2^2}$ from the origin. It follows that the half-plane A can be rotated into the set

$$T(A) = \left\{ (z_1, z_2) | z_1 \leq \frac{t}{\sqrt{\sigma_1^2 + \sigma_2^2}} \right\}.$$

See Figure 2 for the case when $t > 0$, so the half-plane contains the origin. See Figure 3 for the case when $t < 0$, so the origin is not in the half-plane.

Now it is easy to calculate

$$\mathbb{P} \left[(Z_1, Z_2) \in T(A) \right] = \int \int_{T(A)} \frac{\exp\left(\frac{-(z_1^2 + z_2^2)}{2}\right)}{2\pi} dz_1 \, dz_2.$$
Thus $P[X_1 + X_2 \leq t] = P[Z_1 \leq \frac{t}{\sqrt{\sigma_1^2 + \sigma_2^2}}] = P[\sqrt{\sigma_1^2 + \sigma_2^2} Z_1 \leq t]$. Therefore $X_1 + X_2$ is normal with mean 0 and variance $\sqrt{\sigma_1^2 + \sigma_2^2}$.

This proof is elementary, self-contained, conceptual, uses geometric ideas and requires almost no computation.

Alternative rotation proof that a sum of independent normals is normal

This section is an explanation and review of the article by Eisenberg [1].

Using Lemma [1] given $X_1 = a_1 + b_1 Z_1$ and $X_2 = a_2 + b_2 Z_2$ are independent normal random variables, then we can assume that Z_1 and Z_2 are independent standard normal random variables. Then $X_1 + X_2$ will be normal if and only if $Y_1 = b_1 Z_1 + b_2 Z_2$ is normal. Since multiples of normal random variables are normal (again by Lemma [1]), assume without loss of generality that $b_1^2 + b_2^2 = 1$. Also, let $Y_2 = -b_2 Z_1 + b_1 Z_2$. Then

$$
\begin{pmatrix}
Y_1 \\
Y_2
\end{pmatrix} =
\begin{pmatrix}
b_1 & b_2 \\ -b_2 & b_1
\end{pmatrix}
\begin{pmatrix}
Z_1 \\
Z_2
\end{pmatrix} = U
\begin{pmatrix}
Z_1 \\
Z_2
\end{pmatrix}
$$

where U is a rotation matrix. It follows from Lemma [2] that Y_1 and Y_2 have the same joint distribution as Z_1 and Z_2. That is, they are independent standard normal random variables.
A heuristic explanation

It is possible to explain heuristically why the sum of independent normal random variables is normal, using the Central Limit Theorem as given. Recall that the Central Limit Theorem says that if X_1, X_2, \ldots is a sequence of independent, identically distributed random variables with mean 0 and variance 1, then

$$P \left[\frac{X_1 + \cdots + X_n}{\sqrt{n}} \leq t \right] \xrightarrow{D} P[Z \leq t]$$

where Z is normally distributed with mean 0 and variance 1. Then

$$P \left[\frac{X_1 + \cdots + X_n}{\sqrt{n}} \leq t \right] \xrightarrow{D} P[Z_1 \leq t]$$

and

$$P \left[\frac{X_{n+1} + \cdots + X_{2n}}{\sqrt{n}} \leq t \right] \xrightarrow{D} P[Z_2 \leq t]$$

where Z_1 and Z_2 are independent, standard normal random variables. Furthermore

$$P \left[\frac{X_1 + \cdots + X_{2n}}{\sqrt{2n}} \leq t \right] \xrightarrow{D} P[Z_3 \leq t]$$

Since

$$\frac{X_1 + \cdots + X_n}{\sqrt{n}} + \frac{X_{n+1} + \cdots + X_{2n}}{\sqrt{n}} = \frac{X_1 + \cdots + X_{2n}}{\sqrt{n}} = \sqrt{2} \frac{X_1 + \cdots + X_{2n}}{\sqrt{2n}}$$

it seems reasonable that the $Z_1 + Z_2$ has the same distribution as $\sqrt{2}Z_3$, that is $Z_1 + Z_2$ is normal with variance 2.

Sources

This section is adapted from: Eisenberg and Sullivan [2] and Eisenberg [1].
Problems to Work for Understanding

1. Cite a reference that demonstrates that the distribution of the sum of independent random variables is the convolution of the distributions of the two independent random variables.

2. Show by direct computation of the convolution of the distributions that the distribution of the sum of independent normal random variables is again normal.

3. Show that X is normal with mean a and variance b if and only if it can be written as $X = a + bZ$ where Z is standard normal with mean 0 and variance 1.

4. Suppose that the joint random variables (X, Y) are uniformly distributed over the unit disk. Show that X has density $f_X(x) = \frac{2}{\pi} \sqrt{1 - x^2}$ for $-1 \leq x \leq 1$. Using the ideas from the rotation proof, show that $aX + bY$ has density $f_c(x) = \frac{2}{c\pi} \sqrt{1 - \frac{x^2}{c^2}}$ for $-c \leq x \leq c$ where $c = \sqrt{a^2 + b^2}$.
Reading Suggestion:

References

Outside Readings and Links:

1. Transformations of Multiple Random Variables, Sum of Two Random Variables

I check all the information on each page for correctness and typographical errors. Nevertheless, some errors may occur and I would be grateful if you would alert me to such errors. I make every reasonable effort to present current and accurate information for public use, however I do not guarantee the accuracy or timeliness of information on this website. Your use of the information from this website is strictly voluntary and at your risk.

I have checked the links to external sites for usefulness. Links to external websites are provided as a convenience. I do not endorse, control, monitor, or guarantee the information contained in any external website. I don’t guarantee that the links are active at all times. Use the links here with the same caution as you would all information on the Internet. This website reflects the thoughts, interests and opinions of its author. They do not explicitly represent official positions or policies of my employer.

Information on this website is subject to change without notice.

Steve Dunbar’s Home Page, http://www.math.unl.edu/~sdunbar1