Department of
Mathematics 203 Avery Hall University of Nebraska Lincoln Lincoln, NE 685880130 4024723731 (voice) 4024728466 (fax) 
The manipulative kit comes with materials to build the solids. Build your own models of the platonic solids.
Fill in the entries in the following table:






Solid  Vertices  Edges  Faces  Faces per Vertex  Sides per Face 






Tetrahedron  






Cube  






Octahedron  






Dodecaheron  






Icosahedron  






Are there relationships among the values in the table? For instance, why should the number of vertices times the number of edges per vertex be twice the number of edges? (We will encounter this kind of reasoning again in Session C on Counting.) Are there “reciprocal” or “complementary” relationships among the number of vertices and the number of faces between different rows in the table?
Visualize yourself inside a cube (for instance a roughly cubical room like a classroom). Put a vertex in the center of each face, and then connect the vertices with edges. What do you get? What happens if you do the same with a tetrahedron.
Using the dodecahedron you constructed from straws, stand or balance the dodecahedron on an edge. You should have a parallel edge at the “top” of this balancing dodecahedron. Imagine a rectangle which goes through the middle of the dodecahedron with these two edges as the short edges of the rectangle. The length of the rectangle will be the “height” of your balancing dodecahedron. Measure and record both the length of the short side and the long side of this rectangle. Then take the ratio of the long side length to the short side. If you have a group, average all the ratios. How close is your result to the Golden Ratio? (When we did this exercise at the February 4 workshop, we had an average of 1.68, agreement with Golden Ratio good to two decimal places, probably all you can expect from a soda strawn and pipe cleaner construction and a plastic ruler.)
This section is adapted from: Instructor Resources and Adjunct Guide for the second edition of The Heart of Mathematics by E. Burger, M. Starbird, and D. Bergstrand.
[an error occurred while processing this directive]
Steve Dunbar's Home Page, http://www.math.unl.edu/~sdunbar1Last modified: [an error occurred while processing this directive]