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Question of the Day

Key Concepts

1. Bernstein Motion

2.

3.

Vocabulary

1. centered Gaussian random variable

2. covariance matrix

3. Gaussian stochastic process
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4. convergence in distribution

Mathematical Ideas

This section is adapted from: “Bernstein Polynomials and Brow-
nian Motion”, by Emmanuel Kowalski, American Mathematical
Monthly, December 2006, pages 865-886.

Bernstein Motions

Definition 1 We say that a real-valued random variable X is
a centered Gaussian random variable with variance σ2 if it has
a probability density function

1

σ
√

2π
exp(−t2/2σ2)

or equivalently for any chasuble set B ⊂ R

P [X ∈ B] =

∫
B

1

σ
√

2π
exp(−t2/2σ2) dt.

Lemma 1 If X is a centered Gaussian random variable with
variance parameter σ2, then

1.

E [X] =
1

σ
√

2π

∫
R

t exp(−t2/2σ2) dt = 0.

2.

Var X =
1

σ
√

2π

∫
R

t2 exp(−t2/2σ2) dt = σ2.
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3.

E
[
X4] =

1

σ
√

2π

∫
R

t4 exp(−t2/2σ2) dt = 3 Var X2 = 3σ2.

Definition 2 The characteristic function of a random variable
X is

Definition 3 We say the random vector (X1, . . . , Xm) is a cen-
tered Gaussian random variable if

P [(X1, . . . Xm) ∈ B] =
1√

| det(A)|(2π)m/2
∈B exp(−

∑
i,j

bijtitj) dt1 . . . dtm

where E [XiXj] = aij are the entries of the covariance matrix A,
and (bij) is the inverse of A.

Note that this is the m-dimensional extension of the well-
known distribution of a (one-dimensional) Gaussian (or normally-
distributed) random variable

P [X ∈ B] =
1√

2πσ2

∫
B

exp(−t2/σ2) dt.

Definition 4 A mapping x 7→ Xt, where Xt is a random vari-
able for each t (usually t ∈ [0, 1] or t ∈ [0,∞) ) is a Gaussian
stochastic process parametrized by t if the vector (Xt1, . . . , Xtm)
is a centered Gaussian random variable for each finite subset
(t1, . . . , tm). The covariance function of the stochastic process is

g(s, t) = E [XsXt]

We define a Bernstein Motion in the following way. For each
positive integer n let (Ynj)1≤j≤n be a vector of independent, cen-
tered, Gaussian random variables with variance 1/n. (Also, later
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we will want to refer to the probability space Ω which is rich
enough to support all the random variables Ynj, but for now we
will suppress the underlying probability space.)

Define;

Xn0 = 0,

Xnj = Yn1 + · · ·+ Ynj, 1 ≤ j ≤ n

Bn(x) =
n∑

j=0

(
n

j

)
Xnjx

j(1− x)n−j

Consider the properties of the Bernstein motion analogous to
Brownian motion:

1. At x = 0 all the Bernstein polynomials except bn,0(x) =
(1− x)n evaluate to 0. Then Bn(0) = Xn0(1− 0)n = 0.

2. For each value x ∈ [0, 1], Bn(x)is a finite linear combination
of Gaussian random variables, so the distribution of Bn(x)
is Gaussian. Therefore, x 7→ Bn(x) is a Gaussian process.
Then in particular, If 0 ≤ x1 < x2 . . . < xn, then the vector
(B(x1), . . . , B(xn)), is a centered Gaussian random vector

3. The first step is to compute the covariance function E [Bn(x)Bn(y)].

Lemma 2 The covariance function of Bn satisfies

E [Bn(x)Bn(y)] = Qn(x, y)

where Qn is the nth Bernstein polynomial of the continuous
function min(x, y) on [0, 1]× [0, 1].

Proof: By the definition of the Bernstein motions and the
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linearity of the expectation

E [Bn(x)Bn(y)] =
∑

j

∑
k

(
n

j

)(
n

k

)
xj(1− x)n−jyk(1− y)n−kE [XnjXnk]

=
∑

j

∑
k

(
n

j

)(
n

k

)
xj(1− x)n−jyk(1− y)n−k

∑
1≤j′≤j

∑
1≤k′≤k

E [Ynj′Ynk′]

=
∑

j

∑
k

(
n

j

)(
n

k

)
xj(1− x)n−jyk(1− y)n−k

∑
1≤j′≤j

∑
1≤k′≤k

j′, k′

n

In the inner double sum, the only terms that contribute
are when j′ = k′, and they can only contribute for j′ ≤
min(j, k). Therefore

E [XnjXnk] =
min(j, k)

n
= min(j/n, k/n).

Then

E [Bn(x)Bn(y)] =
∑

j

∑
k

(
n

j

)(
n

k

)
min j/n, k/nxj(1−x)n−jyk(1−y)n−k

and the lemma is established.

Corollary 1 • For each x ∈ [0, 1] the sequence of ran-
dom variables (bn(x)) converges in distribution to a
centered Gaussian random variable with variance x.

• For each (x, y) in [0, 1]2, the sequence of vectors (Bn(x)Bn(y))
converges in distribution to a vector (B(x), B(y))of cen-
tered Gaussian random variables with E [B(x)B(y)] =
min(x, y).
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From this corollary we see that if we suggestively denote
lim n →∞ = B(x), then the resulting stochastic process is a
Gaussian process satisfying all the required properties of Brown-
ian motion except the continuity of sample paths. The problem
is that there is no a priori relation between Xnj and Xmk for
n 6= m. Yet according to the heuristic construction we should
have Xnj represents B(j/n) = B(k/m) for instance if k = jl
and m = ln.

Convergence to Wiener Measure

Recall that C([0, 1], R) is a complete metric space with metric
given by the norm ‖f‖ = max[0,1] |f(x)|. Let B be the associated
Borel σ-algebra of subsets of C([0, 1], R). Recall that a Borel σ-
algebra is the smallest σ-algebra containing the open sets in the
topology of the space.

Lemma 3 The σ-algebra B is generated by the cylinder sets

Cx,A = {f ∈ C([0, 1],R) : f(x) ∈ A}

for x ∈ [0, 1] and A a Borel subset of R.

Remark 1 One could call this a “gate” set as well as a cylinder
set, since Cx,A requires the functions f pass through the gate A
at the “time” x.

Remark 2 Note that if A is an open set in R, then Cx,A is an
open set in the (metric-space) topology of C([0, 1], R). One can
see this in two ways:

1. Let f ∈ Cx,A so f(x) ∈ A, and there is an ε > 0, so that
if |y − f(x)| ≤ ε, then y ∈ A. Now, consider g such that
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‖g − f‖ = maxz∈[0,1] |g(z) − f(z)| ≤ ε. Then all the more
so, |g(x)− f(x)| ≤ ε, and so g(x) ∈ A.

2. The “evaluation at x” map f 7→ f(x) is continuous for
the reason in the previous item. Hence the pre-image in
C([0, 1], R) of A under this evaluation map is an open set.

Proof: I. Karatzas and S. Shreve, Brownian Motion and
Stochastic Calculus, Springer Verlag, New York, 1988, Chapter
2, Section 4, Exercise 4.2.

Now consider B−1
n (Cx,A). This is {ω : Bn(ω, x) ∈ A} which is

measurable by definition for fixed x.

Example 1 As an almost trivial example, take n = 2, x = 1/3,
A = (1, 2). Then B2(x) = X20x

2 +2X21x(1−x)+X22(1−x)2 =
2Yn1x(1 − x) + (Y21 + Y22)(1 − x)2 recalling that X20 = 0 and
(Y21, Y22) is a pair of independent centered Gaussian random
variables with variance 1/n = 1/2. We will look at B−1

2 (Cx,A) =
{ω : 1 < 2Yn1 · (2/9) + (Y21 + Y22)(4/9) < 2} = {ω : 1 <
(8/9) · Y21 + (4/9) · Y22 < 2}. This is clearly an event on the
probability space for the random variables Ynj. Note that

We will use the Bernstein motions Bn to define measures Wn

on C([0, 1], R). For a Borel set X of functions in C([0, 1], R),
let Y be the set of events in Ω for which the corresponding nth-
degree Bernstein motion is in X. Then let Wn(X) = P [Y ]. We
are going to show that the sequence of probability measures Wn

converges in distribution to a W which is Wiener measure.

Example 2 As an almost trivial example, take n = 2, x = 1/3,
A = (1, 2). Let X be the open set C1/3,(1,2), hence X is a Borel
set. Then we showed above that Y = {ω : 1 < (8/9)·Y21+(4/9)·
Y22 < 2}. Just for fun, we know that (8/9) · Y21 + (4/9) · Y22
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is a centered Gaussian random variable with variance (8/9)2 ·
(1/2) + (4/9)2 · (1/2) = (80/162). Then

P [1 < (8/9) · Y21 + (4/9) · Y22 < 2] = 0.0751511988

On the other hand, the Wiener measure of C1/3,(0,1) is P [1 < N (0, 1/3) < 2] =
0.0413662555

Theorem 1 With Bn defined as above, the sequence (Wn) of
probability measures on C([0, 1], R) converges in distribution to
a probability measure W such that on the probability space
C([0, 1], R,B, W ) the stochastic process defined by the random
variables B(x) where B(x)(f) = f(x) for f in C([0, 1], R) is a
Brownian motion restricted to [0, 1]

In order to prove the theorem we first need the foll wing
application of Skorohod’s criterion for convergence of probability
measures in distribution:

Theorem 2 Let (Bn) be a sequence of continuous Gaussian pro-
cesses on [0, 1] with the property that for each finite set t1 < t2 <
· · · < tm in [0, 1] the Gaussian random vectors (B1, . . . ,BN(tm))
converge in distribution. Suppose that Bn(0) = 0 almost surely,
and that

E
[
(Bn(x)− Bn(y))4] ≤ C|x− y|2

holds on [0, 1]2 for some constant C. Then the associated se-
quence of probability measures Wn = P [Bn] on C([0, 1], R) con-
verges in distribution to the random variable f 7→ f(x) on the
probability space C([0, 1], R) equipped with the measure W .

Proof: I. Karatzas and S. Shreve, Brownian Motion and
Stochastic Calculus, Springer Verlag, New York, 1988, Chapter
2, Section 4, Exercise 4.11, Theorem 4.15.
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Problems to Work for Understanding

1.

2.

3.

4.

Reading Suggestion:

1.

2.

3.

Outside Readings and Links:

1.

2.

3.

4.
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I check all the information on each page for correctness and typographical
errors. Nevertheless, some errors may occur and I would be grateful if you would
alert me to such errors. I make every reasonable effort to present current and
accurate information for public use, however I do not guarantee the accuracy or
timeliness of information on this website. Your use of the information from this
website is strictly voluntary and at your risk.

I have checked the links to external sites for usefulness. Links to external
websites are provided as a convenience. I do not endorse, control, monitor, or
guarantee the information contained in any external website. I don’t guarantee
that the links are active at all times. Use the links here with the same caution as
you would all information on the Internet. This website reflects the thoughts, in-
terests and opinions of its author. They do not explicitly represent official positions
or policies of my employer.

Information on this website is subject to change without notice.

Last modified: Processed from LATEX source on February 4,
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