Quiz 9 Solutions

Please write your solutions to the following exercises in the space provided. You should write legibly and fully explain your work.

Good Luck!

(1) A diagonalization of the matrix \(A\) is given in the form \(P^{-1}AP = D\). List the eigenvalues of \(A\), their algebraic and geometric multiplicities, and bases for the corresponding eigenspaces. [10 pts]

\[
\begin{bmatrix}
-1/4 & 3/4 & -1/4 \\
1/8 & 1/8 & 1/8 \\
\end{bmatrix}
\begin{bmatrix}
1 & 3 & 3 \\
2 & 0 & 2 \\
3 & 3 & 1
\end{bmatrix}
\begin{bmatrix}
0 & 3 & 1 \\
1 & 2 & 0 \\
-1 & 3 & -1
\end{bmatrix}
=
\begin{bmatrix}
-2 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & -2
\end{bmatrix}.
\]

Solution: The eigenvalues of \(A\) are the diagonal entries of \(D\). Thus, \(A\) has eigenvalues \(\lambda_1 = -2\) and \(\lambda_2 = 6\).

Bases for the eigenspaces can be found by selecting the columns of \(P\) which correspond to the diagonal entries of \(D\). So, a basis for \(E_{-2}\) is

\[
\left\{ \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right\}
\]

and a basis for \(E_6\) is

\[
\left\{ \begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix} \right\}.
\]

We see that \(\lambda_1 = -2\) has algebraic and geometric multiplicity 2, and \(\lambda_2 = 6\) has algebraic and geometric multiplicity 1.
(2) Let \(A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix} \) and \(B = \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix} \). Show that \(A \) and \(B \) are not similar matrices.

Solution: If \(A \) and \(B \) were similar, then they would have equal characteristic polynomials.

The characteristic polynomial of \(A \) is

\[
\det \begin{bmatrix} (1 - \lambda) & 3 \\ 2 & (2 - \lambda) \end{bmatrix} = (1 - \lambda)(2 - \lambda) - 6 = \lambda^2 - 3\lambda - 4.
\]

The characteristic polynomial of \(B \) is

\[
\det \begin{bmatrix} (1 - \lambda) & 1 \\ 3 & (-1 - \lambda) \end{bmatrix} = (1 - \lambda)(-1 - \lambda) - 3 = \lambda^2 - 4.
\]

Since \(A \) and \(B \) have different characteristic polynomials they cannot be similar.

(3) Is the following statement true or false? Carefully justify your answer. [4 pts]

Let \(A \) be a diagonalizable \(n \times n \) matrix such that each eigenvalue \(\lambda \) satisfies \(|\lambda| < 1 \). Then \(\lim_{k \to \infty} A^k \) equals the \(n \times n \) zero matrix.

Solution: This statement is true. Since \(A \) is diagonalizable, there exists an invertible matrix \(P \) and a diagonal matrix \(D \) such that \(A = PDP^{-1} \). We know that the diagonal entries of \(D \) are the eigenvalues of \(A \). Moreover,

\[
\lim_{k \to \infty} A^k = \lim_{k \to \infty} (PDP^{-1})^k = P(\lim_{k \to \infty} D^k)P^{-1}.
\]

Now, \(D^k \) is a diagonal matrix for which each diagonal entry equals the \(k \)th power of an eigenvalue of \(A \). But, as \(k \to \infty \), the \(k \)th power of any eigenvalue of \(A \) approaches 0. That is,

\[
\lim_{k \to \infty} D^k
\]

equals the zero matrix. Therefore, \(\lim_{k \to \infty} A^k \) equals the \(n \times n \) zero matrix.