
Taylor Series

1. A power series in powers of x− c is an expression of the form

∞∑
k=0

bk(x− c)k. (1)

The numbers bk are the coefficients of the series. The set of x for which the series converges
is called the interval of convergence.

2. Proposition: The power series (1) either

a. converges at x = c and diverges everywhere else,

b. converges absolutely for all x, or

c. converges absolutely for |x− c| < r and diverges for |x− c| > r, where 0 < r < ∞. The
endpoints x = c± r must be tested separately for convergence.

The number r in part (c) is called the radius of convergence. In case (a) the radius of
convergence is zero, and in case (b), infinity.

3. Within the interval of convergence the power series represents a function. Suppose that

f(x) =
∞∑

k=0

bk(x− c)k (2)

has a positive radius of convergence. Within the interval of convergence you can differen-
tiate and integrate the power series as you would a polynomial, term-by-term. Thus,

f ′(x) =
∞∑

k=1

kbk(x− c)k−1, (3)

and ∫
f(x) dx =

∞∑
k=0

bk

k + 1
(x− c)k+1 + K, (4)

where K is the constant of integration. Term-by-term differentiation and integration do
not change the radius of convergence, but might change the endpoint behavior. So, for
example,

1
1 + x

=
∞∑

k=0

(−1)kxk, (5)

has interval of convergence (−1, 1), but its integral

ln (1 + x) =
∞∑

k=0

(−1)k

k + 1
xk+1, (6)



converges on (−1, 1].

4. You can manufacture other power series from the geometric series

1
1− x

=
∞∑

k=0

xk for |x| < 1.

Replace x with −x to get the series (3). Integrate (3) to get the (4). Replace x with x2 in
(4) to get

1
1 + x2

=
∞∑

k=0

(−1)kx2k for |x| < 1. (7)

Integrate this to get

arctanx =
∞∑

k=0

(−1)k

2k + 1
x2k+1, for −1 < x ≤ 1. (8)

5. Let

f(x) =
∞∑

k=0

bk(x− c)k, (9)

have a nonzero radius of convergence. By differentiating k times and setting x = c, we
find that

bk =
f (k)(c)

k!
. (10)

So for x in the interval of convergence of the series (9),

f(x) =
∞∑

k=0

f (k)(c)
k!

(x− c)k. (11)

When the power series is written in the form (11), it is called the Taylor series for f about
the point c. Thus you could refer to the series on the right-hand side of (8) as the “power
series” or the “Taylor series” for arctan x about c. The numbers bk as given by (10) are
called Taylor coefficients.

6. With the recipe (11) you can in principle compute any Taylor series. Some important
examples are

a. The Taylor series for sinx about c = 0:

sinx =
∞∑

k=0

(−1)k

(2k + 1)!
x2k+1, for all x. (12)



b. The Taylor series for cos x about c = 0:

cos x =
∞∑

k=0

(−1)k

(2k)!
x2k, for all x. (13)

c. The Taylor series for ex about c = 0:

ex =
∞∑

k=0

1
k!

xk, for all x. (14)

d. The Taylor series for coshx about c = 0:

coshx =
∞∑

k=0

1
(2k)!

x2k, for all x. (15)

e. The Taylor series for sinhx about c = 0:

sinhx =
∞∑

k=0

1
(2k + 1)!

x2k+1, for all x. (16)

7. You can use the Taylor series (12)-(16) to manufacture other Taylor series. For example,
by replacing x with −x2 in (14), we get

e−x2
=

∞∑
k=0

(−1)k

k!
x2k, for all x. (17)

Multiply the series (13) by x3 to obtain

x3 cos x =
∞∑

k=0

(−1)k

(2k)!
x2k+3, for all x. (18)

In both these examples, it is easier to build the new series from the old than it is to use
the recipe (11).

8. By dropping terms of order larger than n, we obtain the nth Taylor polynomial for f
about c.

Pn(x) =
n∑

k=0

f (k)(c)
k!

(x− c)k. (19)

Note that P0(x) is the constant f(c) and that

P1(x) = f(c) + f ′(c)(x− c), (20)



is the tangent line approximation to f at x = c. In general, Pn(x) is the polynomial of
degree at most n that best approximates f(x) for x near c.

9. What is meant by “best approximation,” in the preceeding paragraph? By differenti-
ating Pn(x) k times and setting x = c we see that

P (k)
n (c) ≡ f (k)(c), for k = 0, . . . , n (21)

Thus the values of Pn and f , and those of their derivatives up to order n, coincide at x = c.
Thus for n large, once expects the graph of Pn to resemble that of f when x is close to c.
Since Pn(x) is a polynomial of degree n,

P (m)
n (x) ≡ 0,

for m > n. Thus you can’t count on matching the derivatives of Pn and f at c beyond
order n.

10. By increasing n you can improve the approximation

Pn(x) ≈ f(x), (22)

and enlarge the region over which it is valid. However, this will only work inside the interval
of convergence. For x outside the interval, Pn(x) won’t generally be a good approximation
to f(x), and you won’t be able to improve the situation by increasing n.

11. How good is the approximation (22)? Taylor’s theorem asserts that

f(x)− Pn(x) = Rn(x)

=
f (n+1)(z)
(n + 1)!

(x− c)n+1, (23)

where z lies between c and x. Rn(x) is called the remainder.


