Surface Integrals

1. Let $d S$ be the surface area differential on a surface \mathcal{S}. If $f: \mathbf{R}^{2} \mapsto \mathbf{R}$ is C^{1} on a domain R and

$$
\begin{equation*}
\mathcal{S}=\{(x, y, z) \mid z=f(x, y) \text { for }(x, y) \in R\} \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
d S=\sqrt{1+f_{x}(x, y)^{2}+f_{y}(x, y)^{2}} d A \tag{2}
\end{equation*}
$$

We can thus reduce the integral of a continuous function $g: \mathbf{R}^{3} \mapsto \mathbf{R}$ over \mathcal{S} to an integral over R :

$$
\begin{equation*}
\int_{\mathcal{S}} g(x, y, z) d S=\int_{R} g(x, y, f(x, y)) \sqrt{1+f_{x}(x, y)^{2}+f_{y}(x, y)^{2}} d A \tag{3}
\end{equation*}
$$

where $d A$ is the area differential on R.
2. We orient a surface \mathcal{S} by choosing a unit normal vector \vec{n}. (In these notes, we always assume that a surface can be oriented.) If \mathcal{S} is given by (1), the unit normals are

$$
\begin{equation*}
\vec{n}= \pm \frac{\left\langle f_{x}(x, y), f_{y}(x, y),-1\right\rangle}{\sqrt{1+f_{x}(x, y)^{2}+f_{y}(x, y)^{2}}} \tag{4}
\end{equation*}
$$

The one with the plus sign is called downward pointing, and the the other, upward pointing. We orient \mathcal{S} by choosing one of them to be \vec{n}. If \mathcal{S} is a closed surface, we choose either the outer or inner unit normal.
3. The flux of a vector field across an oriented surface \mathcal{S} is

$$
\begin{equation*}
\Phi=\iint_{\mathcal{S}} \vec{F} \cdot \vec{n} d S \tag{5}
\end{equation*}
$$

As we saw in class, Φ measures the net flow of \vec{F} through \mathcal{S}. Flow "against" \vec{n} is counted as negative, and flow "with" \vec{n} as positive.
4. Suppose that \mathcal{S} is given by (1). Then by (2) and (4),

$$
\begin{equation*}
\vec{n} d S= \pm\left\langle f_{x}(x, y), f_{y}(x, y),-1\right\rangle d A \tag{6}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\Phi=\iint_{\mathcal{S}} \vec{F} \cdot \vec{n} d S= \pm \iint_{R} \vec{F}(x, y, f(x, y))\left\langle f_{x}(x, y), f_{y}(x, y),-1\right\rangle d A \tag{7}
\end{equation*}
$$

where the plus sign indicates the downward orientation, and the minus sign the upward.
5. Formula (7) should be modified in the obvious way when \mathcal{S} is the graph of a function $f(x, z)$, for (x, z) in some region R. In this case,

$$
\begin{equation*}
\left.\Phi= \pm \iint_{R} \vec{F}(x, f(x, z), z)\left\langle f_{x}(x, y),-1, f_{z}(x, z)\right)\right\rangle d A \tag{8}
\end{equation*}
$$

where $d A$ is the area differential on the $x z$-plane. The plus and minus signs are for the left and right pointing unit normals respectively. The case $x=f(y, z)$ is handled similarly.
6. Let $\vec{F}=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$ be a C^{1} vector field. The divergence of \vec{F} is

$$
\begin{equation*}
\operatorname{div} \vec{F}=\nabla \cdot \vec{F}=F_{1_{x}}+F_{2_{y}}+F_{3_{z}} \tag{9}
\end{equation*}
$$

Note that $\operatorname{div} \vec{F}: \mathbf{R}^{3} \mapsto \mathbf{R}$. Thus $\operatorname{div} \vec{F}$ is a scalar valued function.
7. Let B be a box, centered at P, with volume V. Let the boundary ∂B be oriented so that the unit normal points outward. As we showed in class,

$$
\begin{equation*}
\iint_{\partial B} \vec{F} \cdot \vec{n} d S=\iiint_{B} \operatorname{div} \vec{F} d V . \tag{10}
\end{equation*}
$$

Divide by the volume V and shrink B to the point P to get

$$
\begin{equation*}
\lim _{B \downarrow P} \frac{1}{V} \iint_{B} \vec{F} \cdot \vec{n} d S=\operatorname{div} \vec{F}(P) . \tag{11}
\end{equation*}
$$

We may thus interpret the divergence of \vec{F} at P is the "infinitesimal flux" per unit volume of \vec{F} out of P.
8. If $\operatorname{div} \vec{F}(P)>0$, the point P is called a source. If $\operatorname{div} \vec{F}(P)<0, P$ is a sink. If $\operatorname{div} \vec{F}(P)=0$ for all P in a region D, then \vec{F} is called incompressible on D.
9. The region B in equation (11) doesn't have to be a box. Any blob that can be shrunk to the point P will do. As it happens, (10) also holds for domains more general than boxes. This is the assertion of the divergence theorem.
10. The Divergence Theorem: If $Q \subset \mathbf{R}^{3}$ is bounded, simply connected and enclosed by $\partial Q, \vec{n}$ is the outer unit normal to ∂Q, and \vec{F} is C^{1}, then

$$
\begin{equation*}
\iint_{\partial Q} \vec{F} \cdot \vec{n} d S=\iiint_{Q} \operatorname{div} \vec{F} d V \tag{12}
\end{equation*}
$$

The idea behind the divergence theorem is simple. Consider an infinitesimal region of volume $d V$, containing the point (x, y, z). Since the divergence is the infinitesimal flux per unit volume out of a point, the quantity

$$
\begin{equation*}
\operatorname{div} \vec{F}(x, y, z) d V \tag{13}
\end{equation*}
$$

is the net flow of \vec{F} out of (x, y, z). When we integrate (13), the flow out of one interior region into another contributes nothing, leaving only the flux out of Q through ∂Q. Hence the conclusion (12).
11. Advice on doing flux integrals: Let \mathcal{S} be an oriented surface with unit nromal \vec{n}. Let \vec{F} be a vector field that is C^{1} in a simply connected region containing \mathcal{S}.
a. If the integral is simple enough, you can use (5). For example, if you have an inverse square field

$$
\vec{F}(x, y, z)=\frac{c \vec{r}}{\|\vec{r}\|^{3}}
$$

and \mathcal{S} is the sphere of radius R centered at the origin, then $\vec{n}=\vec{r} / R$ and

$$
\begin{aligned}
\iint_{\mathcal{S}} \vec{F} \cdot \vec{n} d S & =\frac{c}{R} \iint_{\mathcal{S}} \frac{\vec{r}}{\|\vec{r}\|^{3}} \cdot \vec{r} d S \\
& =\frac{c}{R^{2}} \iint_{\mathcal{S}} d S \\
& =4 \pi c .
\end{aligned}
$$

b. If \mathcal{S} is closed and the direct use of (5) isn't inviting, try the divergence theorem.
c. If \mathcal{S} is not closed, it might be advantageous to replace it with a surface \mathcal{C} that is closed, and then apply the divergence theorem. Suppose for example that you want to compute the flux of

$$
\vec{F}(x, y, z)=\langle z-x, x+y, 0\rangle
$$

across the upper hemisphere \mathcal{S} of radius 1 , centered at the origin, oriented upward. Let \mathcal{D} be the disk of radius 1 about the origin in the $x y$-plane, oriented downward. You can tell at a glance that

$$
\begin{equation*}
\iint_{\mathcal{D}} \vec{F} \cdot \vec{n} d S=0 \tag{14}
\end{equation*}
$$

Since $\mathcal{C}=\mathcal{S} \cup \mathcal{D}$ is closed, we can apply the divergence theorem. Let B be the region bounded by \mathcal{C}. Then,

$$
\begin{aligned}
\iint_{\mathcal{S}} \vec{F} \cdot \vec{n} d S & =\iint_{\mathcal{S}} \vec{F} \cdot \vec{n} d S+\iint_{\mathcal{D}} \vec{F} \cdot \vec{n} d S \\
& =\iint_{\mathcal{C}} \vec{F} \cdot \vec{n} d S \\
& =\iiint_{B} \operatorname{div} \vec{F} d V \\
& =0
\end{aligned}
$$

d. If necessary, use (7).

