Second-Order, Linear Equations 3: The Inhomogeneous Equation

1. Consider the linear, second-order, inhomogeneous equation

$$Lu \equiv u'' + p(t)u' + q(t)u = g(t), \tag{1}$$

for t in some open interval I. The homogeneous equation is

$$Lu \equiv u'' + p(t)u' + q(t)u = 0.$$
 (2)

2. Proposition: Let $\{u_1, u_2\}$ be a fundamental set for the homogeneous equation (2), and u_p a solution to the inhomogeneous equation (1). Then the general solution to (1) is

$$u(t) = c_1 u_1(t) + c_2 u_2(t) + u_p(t).$$
(3)

- **3.** You can find a particular solution u_p to the inhomogeneous equation by the method of variation of parameters.
- **a**. Let u_1 and u_2 be independent solutions to (2). Look for the particular solution in the form

$$u_p(t) = c_1(t)u_1(t) + c_2(t)u_2(t). (4)$$

b. If you assume that

$$c_1'u_1 + c_2'u_2 = 0, (5)$$

then the equation

$$Lu_p = g(t),$$

reduces to

$$c_1'u_1' + c_2'u_2' = g(t). (6)$$

You now have two equations, (5) and (6), for the two unknowns c'_1 and c'_2 . The solutions are

$$c_1'(t) = -\frac{g(t)u_2(t)}{W(u_1, u_2)(t)},\tag{7}$$

$$c_2'(t) = \frac{g(t)u_1(t)}{W(u_1, u_2)(t)}. (8)$$

Since u_1 and u_2 are linearly independent, the Wronskian in the denominator is nonzero. Thus

$$c_1(t) = -\int \frac{g(t)u_2(t)}{W(u_1, u_2)(t)} dt, \tag{9}$$

and

$$c_2(t) = \int \frac{g(t)u_1(t)}{W(u_1, u_2)(t)} dt.$$
 (10)

You can take the constants of integration in (9) and (10) to be zero. When you can't do the integrals, it is best to write $c_1(t)$ and $c_2(t)$ as definite integrals.

 ${f c}.$ Form the general solution,

$$u(t) = a_1 u_1(t) + a_2 u_2(t) + u_p(t)$$

= $a_1 u_1(t) + a_2 u_2(t) + c_1(t) u_1(t) + c_2(t) u_2(t),$ (11)

where $c_1(t)$ and $c_2(t)$ are given by (9) and (10).

4. Example: Find the general solution to

$$u'' + u = \sin 2t. \tag{12}$$

Two independent solutions to the homogeneous equation u'' + u = 0 are $u_1(t) = \cos t$ and $u_2(t) = \sin t$. The Wronskian is

$$W(u_1, u_2)(t) = 1. (13)$$

Hence

$$c_1(t) = -\int \frac{g(t)u_2(t)}{W(u_1, u_2)(t)} dt$$

$$= -\int \sin 2t \cos t dt$$

$$= \frac{2}{3} \sin^3 t,$$
(14)

and

$$c_2(t) = \int \frac{g(t)u_1(t)}{W(u_1, u_2)(t)} dt$$

$$= \int \sin 2t \sin t dt$$

$$= \frac{2}{3} \sin^3 t,$$
(15)

Hence the general solution to (12) is

$$u(t) = a_1 \cos t + a_2 \sin t + \frac{2}{3} \sin^3 t \cos t + \frac{2}{3} \cos^3 t \sin t$$

= $a_1 \cos t + a_2 \sin t + \frac{1}{3} \sin 2t$. (16)

5. **Example:** Solve the initial value problem

$$\begin{cases} y'' - y = \exp(\sin t), \\ y(0) = 1, \\ y'(0) = 0. \end{cases}$$

Two independent solutions to the homogeneous equation are $y_1(t) = e^{-t}$ and $y_2(t) = e^{t}$. The Wronskian is

$$W(y_1, y_2)(t) = 2.$$

Hence

$$c_1(t) = -\frac{1}{2} \int_0^t e^{z + \sin z} dz,$$

and

$$c_2(t) = \frac{1}{2} \int_0^t e^{-z + \sin z} dz.$$

The general solution is

$$y(t) = a_1 e^{-t} + a_2 e^t - \frac{e^{-t}}{2} \int_0^t e^{z + \sin z} dz + \frac{e^t}{2} \int_0^t e^{-z + \sin z} dz.$$
 (17)

The initial conditions tell you that

$$y(0) = a_1 + a_2 = 1, (18)$$

and

$$y'(0) = -a_1 + a_2 = 0, (19)$$

and hence that

$$a_1 = a_2 = \frac{1}{2}.$$

$$y(t) = \cosh t - \frac{e^{-t}}{2} \int_0^t e^{z + \sin z} dz + \frac{e^t}{2} \int_0^t e^{-z + \sin z} dz.$$
 (20)

This can also be written as

$$y(t) = \cosh t + \int_0^t \sinh(t - z) e^{\sin z} dz. \tag{21}$$