1. The gradient of $f: \mathbf{R}^3 \mapsto \mathbf{R}$ is the vector

$$\nabla f = \langle f_x, f_y, f_z \rangle, \tag{1}$$

with the obvious modification for functions of two variables. If, for example,

$$f(x, y, z) = x^2y + y^2z,$$

then

$$\nabla f(x, y, z) = \langle 2xy, x^2 + 2yz, y^2 \rangle, \qquad (2)$$

and

$$\nabla f(1,1,2) = \langle 2,4,1 \rangle. \tag{3}$$

2. The derivative of f at the point P in the unit direction \vec{u} is

$$D_{\vec{u}}f(P) = \nabla f(P) \cdot \vec{u}. \tag{4}$$

If \vec{v} is not a unit vector, then by definition, the derivative of f at P in the direction \vec{v} is $D_{\vec{u}}f(P)$, where $\vec{u} = \vec{v}/|\vec{v}|$. Note that the directional derivative is a scalar. You can think of it as the rate of change of f at P in the direction \vec{v} . If f is a function of two variables, the directional derivative is the slope of the surface z = f(x, y) at the point P, in the direction \vec{v} .

3. We used formula (4) to show that $\nabla f(P)$ is the direction of steepest ascent, or most rapid increase, of the function f at the point P. In other words, $D_{\vec{u}}f(P)$ is maximized when

$$\vec{u} = \frac{\nabla f(P)}{|\nabla f(P)|}.$$

That steepest slope, or maximum rate of increase is $|\nabla f(P)|$. By the same token, the direction and rate of most rapid descent are

$$\vec{u} = -\frac{\nabla f(P)}{|\nabla f(P)|},$$

 $-\|\nabla f(P)\|$ respectively.

4. Suppose a surface S is given implicitly by the equation

$$F(x, y, z) = K, (5)$$

for some C^1 function F and a constant K. You can think of S as

- a. a level surface of F, i.e. the surface on which F(x, y, z) has the constant value K, or
- **b.** the graph of a function z = z(x, y), defined implicitly by equation (5).

As we saw in class, if (a, b, c) lies on S, then the vector $\nabla F(a, b, c)$ is normal to S at that point. So, for example, the sphere S of radius $\sqrt{6}$ centered at the origin is given by

$$F(x, y, z) = x^{2} + y^{2} + z^{2} = 6.$$
 (6)

The vector

$$\nabla F(1, 2, -1) = \langle 2, 4, -2 \rangle$$
,

is normal to the sphere at (1, 2, -1).

5. If S is the graph of a function given explicitly by

$$z = f(x, y), \tag{7}$$

we set

$$F(x, y, z) = f(x, y) - z,$$

and obtain the implicit representation

$$F(x, y, z) = 0. (8)$$

According to the last paragraph, the vector

$$\nabla F(a,b,c) = \langle f_x(a,b), f_y(a,b), -1 \rangle,$$

is normal to the graph at the point (a, b, c), where c = f(a, b). For example, the surface S given explicitly by $z = f(x, y) = x^2 - 2y^2$, has implicit form

$$F(x, y, z) = x^2 - 2y^2 - z = 0.$$

Hence the vector

$$\nabla F(3,1,7) = \langle 6, -4, -1 \rangle,$$

is normal to the graph at (3, 1, 7).

6. The analogous statement holds for curves. Let $\mathcal C$ be a curve given implicitly by the equation

$$\nabla G(x,y) = K.$$

If (a, b) is a point on C, then $\nabla G(a, b)$ is normal to C at that point.