Math 843 Final Exam. Do four problems. Show your work.

1. The initial value problem for the heat equation with periodic boundary conditions is

$$(P_1) \begin{cases} u_t - u_{xx} = 0, & \text{for } 0 \le x \le 1, t > 0, \\ u(x, 0) = f(x), \\ u(0, t) - u(1, t) = 0, \\ u_x(0, t) - u_x(1, t) = 0. \end{cases}$$

- [5] a. Set u(x,t) = X(x)T(t). Derive an ODE for T and an eigenvalue problem for X.
- [5] **b**. Show that the eigenvalue problem is self-adjoint.
- [5] c. Find the eigenvalues. Describe the eigenspaces. Find an orthonormal basis for each eigenspace.
- [5] **d**. Write the solution in the form

$$u(x,t) = \int_0^1 G(x,\xi,t)f(\xi) \, d\xi.$$
 (1)

Give G explicitly.

- **2**. Let Q be a blob in \mathbb{R}^3 with a smooth, closed boundary ∂Q . Let ν be the outer unit normal to ∂Q .
- [10] **a**. Derive the identity

$$\int_{Q} w\Delta w \, dx = \int_{\partial Q} w\nabla w \cdot \nu \, dS - \int_{Q} |\nabla w|^{2} \, dx. \tag{2}$$

[10] b. Use (2) to prove the unicity of the solution to the Dirichlet problem

$$(P_2) \begin{cases} \Delta u(x) = 0 & \text{for } x \in Q, \\ u(x) = f(x), & \text{for } x \in \partial Q. \end{cases}$$

3. A thin, elastic membrane occupies a region $Q \subset \mathbf{R}^2$ that is bounded by the smooth, closed curve ∂Q . The membrane is clamped along ∂Q . Small-amplitude vibrations on Q are modeled by an initial-boundary value problem for the wave equation

$$(P_3) \begin{cases} u_{tt} - \Delta u = 0 & \text{for } x \in Q, \ t > 0, \\ u(x,0) = f(x), \\ u_t(x,0) = g(x), \\ u|_{\partial Q} = 0. \end{cases}$$

[10] **a**. Derive the energy identity

$$\frac{1}{2} \int_{Q} \left[u_t(x,t)^2 + |\nabla u(x,t)|^2 \right] dx = \text{Constant.}$$
 (3)

[10] **b.** Use (3) to establish the unicity of the solution to (P_3) .

4. For D > 0, t > 0 and $x \in \mathbf{R}^n$, let

$$G(x,t) = (4\pi Dt)^{-\frac{n}{2}} \exp\left(-\frac{|x|^2}{4Dt}\right).$$
 (4)

- [10] **a.** Compute the Fourier transform $\hat{G}(\xi, t)$.
- [10] **b**. Solve the initial value problem for the heat equation,

$$(P_4) \begin{cases} u_t - D\Delta u = 0 & \text{for } x \in \mathbf{R}^n, \ t > 0, \\ u(x, 0) = f(x), \end{cases}$$

[20] 5. Consider the initial value problem for the linear, inhomogeneous Schrödinger equation,

$$(P_5) \begin{cases} u_t = iu_{xx} + g(x,t) & \text{for } x \in \mathbf{R}, \, t > 0, \\ u(x,0) = f(x), \end{cases}$$

where is f is smooth and decays rapidly as $|x| \to \infty$. Use the Fourier transform to derive a solution representation

$$u(x,t) = \int_{-\infty}^{\infty} K(x,y,t)f(y) dy + \int_{0}^{t} \int_{-\infty}^{\infty} K(x,y,t-s)g(y,s) dy ds.$$
 (5)

Give K explicitly. (Hint: Just pretend that i is a real diffusion coefficient. This raises doubts about the convergence of the integrals in (5). Ignore the doubts and proceed by the method of wishful thinking.)

[20] 6. Use the method of characteristics to solve the initial value problem

$$(P_6) \begin{cases} u_t + 2tu_x - e^{-u} = 0 & \text{for } x \in \mathbf{R}, \ t > 0, \\ u(x, 0) = x. \end{cases}$$

[20] 7. Consider the initial value problem

$$(P_7) \begin{cases} u_t + u^3 u_x = 0 & \text{for } x \in \mathbf{R}, \ t > 0, \\ u(x,0) = g(x), \end{cases}$$

where

$$g(x) = \begin{cases} 1 & \text{for } x \le 0, \\ 1 - x & \text{for } 0 < x \le 1, \\ 0 & \text{for } x > 1. \end{cases}$$

Does the solution undergo gradient blowup at some finite time t_b ? If so, give t_b .

[20] 8. Consider the initial value problem

$$(P_8)$$
 $\begin{cases} u_t + uu_x = 0 & \text{for } x \in \mathbf{R}, \ t > 0, \\ u(x,0) = f(x), \end{cases}$

where

$$f(x) = \begin{cases} 0 & \text{for } x \le 0, \\ x^2 & \text{for } x > 0. \end{cases}$$

- [10] a. Does the solution undergo gradient blowup at some finite time t_b ? If so, give t_b .
- [10] **b.** Solve (P_8) .
- [20] 9. Let Q(t) be a material volume in a fluid flowing with velocity field v. Derive the convection theorem,

$$\frac{d}{dt} \int_{Q(t)} g(x,t) \, dx = \int_{Q(t)} \left[\frac{Dg}{Dt} + g \nabla \cdot v \right] dx. \tag{6}$$

You may assume the Euler expansion formula for the Jacobian J.

[20] **10.** Let w(x,y) = (u(x,y), -v(x,y)) be the velocity field of a steady, two-dimensional, incompressible flow. Suppose, moreover, that the flow is irrotational, so that $w(x,y) = \nabla \varphi(x,y)$ for some potential function $\varphi(x,y)$. Show that

$$u_x = v_y$$
, and $u_y = -v_x$. (7)

(Note that these are the just the Cauchy-Riemann equations from complex variable theory. (7) shows (subject to the continuity of the partial derivatives) that u(x,y) - iv(x,y) is an analytic function. Thus many problems in two-dimensional, steady, incompressible flow can be solved by complex variable methods, in particular by conformal mapping.