
Math 843 Final Exam. Do four problems. Show your work.

1. The initial value problem for the heat equation with periodic boundary conditions is

(P1)


ut − uxx = 0, for 0 ≤ x ≤ 1, t > 0,
u(x, 0) = f(x),
u(0, t)− u(1, t) = 0,

ux(0, t)− ux(1, t) = 0.

[5] a. Set u(x, t) = X(x)T (t). Derive an ODE for T and an eigenvalue problem for X.

[5] b. Show that the eigenvalue problem is self-adjoint.

[5] c. Find the eigenvalues. Describe the eigenspaces. Find an orthonormal basis for each eigenspace.

[5] d. Write the solution in the form

u(x, t) =
∫ 1

0

G(x, ξ, t)f(ξ) dξ. (1)

Give G explicitly.

2. Let Q be a blob in R3 with a smooth, closed boundary ∂Q. Let ν be the outer unit normal to ∂Q.

[10] a. Derive the identity ∫
Q

w∆w dx =
∫

∂Q

w∇w · ν dS −
∫

Q

|∇w|2 dx. (2)

[10] b. Use (2) to prove the unicity of the solution to the Dirichlet problem

(P2)
{

∆u(x) = 0 for x ∈ Q,
u(x) = f(x), for x ∈ ∂Q.

3. A thin, elastic membrane occupies a region Q ⊂ R2 that is bounded by the smooth, closed curve
∂Q. The membrane is clamped along ∂Q. Small-amplitude vibrations on Q are modeled by an
initial-boundary value problem for the wave equation

(P3)


utt −∆u = 0 for x ∈ Q, t > 0,
u(x, 0) = f(x),
ut(x, 0) = g(x),
u
∣∣
∂Q

= 0.

[10] a. Derive the energy identity

1
2

∫
Q

[
ut(x, t)2 + |∇u(x, t)|2

]
dx = Constant. (3)

[10] b. Use (3) to establish the unicity of the solution to (P3).



4. For D > 0, t > 0 and x ∈ Rn, let

G(x, t) = (4πDt)−
n

2 exp
(
− |x|

2

4Dt

)
. (4)

[10] a. Compute the Fourier transform Ĝ(ξ, t).

[10] b. Solve the initial value problem for the heat equation,

(P4)
{

ut −D∆u = 0 for x ∈ Rn, t > 0,
u(x, 0) = f(x),

[20] 5. Consider the initial value problem for the linear, inhomogeneous Schrödinger equation,

(P5)
{

ut = iuxx + g(x, t) for x ∈ R, t > 0,
u(x, 0) = f(x),

where is f is smooth and decays rapidly as |x| → ∞. Use the Fourier transform to derive a solution
representation

u(x, t) =
∫ ∞

−∞
K(x, y, t)f(y) dy +

∫ t

0

∫ ∞

−∞
K(x, y, t− s)g(y, s) dy ds. (5)

Give K explicitly. (Hint: Just pretend that i is a real diffusion coefficient. This raises doubts about
the convergence of the integrals in (5). Ignore the doubts and proceed by the method of wishful
thinking.)

[20] 6. Use the method of characteristics to solve the initial value problem

(P6)
{

ut + 2tux − e−u = 0 for x ∈ R, t > 0,
u(x, 0) = x.

[20] 7. Consider the initial value problem

(P7)
{

ut + u3ux = 0 for x ∈ R, t > 0,
u(x, 0) = g(x),

where

g(x) =


1 for x ≤ 0,
1− x for 0 < x ≤ 1,
0 for x > 1.

Does the solution undergo gradient blowup at some finite time tb? If so, give tb.



[20] 8. Consider the initial value problem

(P8)
{

ut + uux = 0 for x ∈ R, t > 0,
u(x, 0) = f(x),

where

f(x) =
{ 0 for x ≤ 0,

x2 for x > 0.

[10] a. Does the solution undergo gradient blowup at some finite time tb? If so, give tb.

[10] b. Solve (P8).

[20] 9. Let Q(t) be a material volume in a fluid flowing with velocity field v. Derive the convection theorem,

d

dt

∫
Q(t)

g(x, t) dx =
∫

Q(t)

[
Dg

Dt
+ g∇ · v

]
dx. (6)

You may assume the Euler expansion formula for the Jacobian J .

[20] 10. Let w(x, y) = (u(x, y),−v(x, y)) be the velocity field of a steady, two-dimensional, incompressible
flow. Suppose, moreover, that the flow is irrotational, so that w(x, y) = ∇ϕ(x, y) for some potential
function ϕ(x, y). Show that

ux = vy, and uy = −vx. (7)

(Note that these are the just the Cauchy-Riemann equations from complex variable theory. (7)
shows (subject to the continuity of the partial derivatives) that u(x, y) − iv(x, y) is an analytic
function. Thus many problems in two-dimensional, steady, incompressible flow can be solved by
complex variable methods, in particular by conformal mapping.


