Exam 1 Solutions

- 1. See the first example in the notes on singular perturbation.
- **2a.** Let Θ be temperature and \mathcal{T} time. By comparing terms we see that

$$[q] = \Theta \mathcal{T}^{-1}, \quad [\theta] = \Theta \quad \text{and} \quad [k] = \mathcal{T}^{-1}.$$

- **2b**. Two time scales are $t_1 = \theta/q$ and $t_2 = 1/k$.
- **2c.** When the heat loss term dominates, the appropriate time scale is $t_2 = 1/k$. We therefore set

$$\tau = kt$$
 and $x(\tau) = \frac{X(t)}{X_f}$.

In terms of τ and x the initial value problem is

$$\begin{cases} \dot{x} = ae^{-b/x} - (x-1), \\ x(0) = x_0, \end{cases}$$

where the dot indicates differentiation with respect to τ and $a = q/kX_f$, $b = \theta/X_f$ and $x_0 = X_0/X_f$ are dimensionless.

3a. Assume an expansion

$$m = 1 + \varepsilon m_1 + O(\varepsilon^2),$$

for the root of p near x = 1. Plug this into the equation

$$p(m) \equiv m^2 + (3+\varepsilon)m + 2 = 0,$$

and match powers of ε . At O(1) you'll just get 0=0. At $O(\varepsilon)$ the equation is

$$2m_1 - 3m_1 - 1 = 0,$$

so that $m_1 = -1$. Thus, to $O(\varepsilon)$, the root is

$$m=1-\varepsilon$$
.

3b. With $\varepsilon = 0$, we solve p(x) = 0 for $x_0 = 1$. (Remember that we are approximating the root near 1.) We set

$$F(x) = x^2 - 3x + 2,$$

and

$$G(x) = \varepsilon x$$
.

The equation for x_1 is

$$F(x_1) = G(1),$$

or

$$x_1^2 - 3x_1^2 + 2 - \varepsilon = 0.$$

By the quadratic formula, the root near 1 is

$$x_1 = \frac{3 - \sqrt{9 - 4(2 - \varepsilon)}}{2}$$
$$= \frac{3 - \sqrt{1 + 4\varepsilon}}{2}$$
$$\approx 1 - \varepsilon.$$

4a. The dimension matrix A is

4b. Since the rank of A is 4, there is one independent dimensionless quantity, π . If

$$\alpha = \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \\ -1 \end{bmatrix},$$

then

$$A\alpha = 0.$$

Thus α lies in the kernel of A, and we may take

$$\pi = \frac{aD\mu}{kT}.$$

By the Buckingham Pi theorem, the physical law $f(a,D,\mu,T,k)=0$ is equivalent to one of the form

$$F(\pi) = 0.$$

We assume that this implies that π is some constant C. Hence,

$$D = C \, \frac{kT}{a\mu}.$$