Applied Mathematics (842-843) Qualifying Examination June 2005

Instructions: Solve every problem, showing your work neatly and carefully. A table of Laplace transforms is included with the examination.

1. (14 pts) One version of the Ramsey growth model in economics involves minimizing the "total product"

$$J(M) = \int_0^T (aM - M' - b)^2 dt, \quad a, b > 0,$$

over a fixed planning period [0,T], where M=M(t) is the capital at time t and $M(0)=M_0$ is the initial capital. If M(t) minimizes J, find the capital M(T) at the end of the planning period.

2. (14 pts) A model of a predator–prey system where the predator consumes the eggs of the prey is given by

$$\begin{array}{rcl} \frac{dU}{d\tau} & = & -mU + ahX, \\ \frac{dX}{d\tau} & = & -hX + bU - \frac{cXP}{B+X}, \\ \frac{dP}{d\tau} & = & rP\left(1 - \frac{P}{K}\right) + \frac{ycXP}{B+X}, \end{array}$$

where U is the prey population, X is the number of eggs, P is the predator population, and τ is time.

- (a) Make a table of the nine constants in the problem, showing their dimensions.
- (b) Introduce dimensionless quantites u, x, p, and t for the dependent variables and time, and reformulate the equations in dimensionless form, defining any dimensionless constants you introduce.
- 3. (14 pts) Consider the Liouville equation

$$y'' + (\lambda^2 x^2 + x)y = 0, \quad x > 0,$$

where λ is a very large parameter. Because we expect rapidly oscillating solutions (why?), we make the transformation $y(x) = e^{i\lambda u(x)}$, where u(x) is a real-valued function. Apply a perturbation method, as used in the WKB approximation, to find two real, leading order approximations to two independent solutions to the Liouville equation.

4. (14 pts) The modified Bessel function $I_n(x)$ has integral representation

$$I_n(x) = \frac{1}{\pi} \int_0^{\pi} e^{x \cos \theta} \cos n\theta d\theta, \quad n = 1, 2, 3, \dots$$

Find the leading order asymptotic approximation of $I_n(x)$ as $x \to +\infty$.

- 5. (14 pts) A straight, narrow tube extends from x=0 to $x=\infty$. (It is long enough to be considered semi-infinite.) A chemical reaction at x=0, initiated at time t=0, generates a compound A that diffuses outward into the tube with diffusion coefficient D>0. The reaction is controlled so as to make the density of A at x=0 and time t>0 equal to f(t), where f is a smooth, bounded function, and f(0)=0. For $t\geq 0$, the density of A tends to zero as $x\to\infty$.
 - (a) Formulate an initial-boundary value problem for the density u = u(x,t) of A.
 - (b) Solve the problem from part (a) and write your solution in the form

$$u(x,t) = \int_0^t K(x,t-\tau)f(\tau) d\tau,$$

giving the function K explicitly.

6. (14 pts) Let the function k(x,y), defined on the square $[0,\pi]\times[0,\pi]$, be given by

$$k(x,y) = \begin{cases} \cos y \sin x, & x < y, \\ \sin y \cos x, & x > y. \end{cases}$$

Find the eigenvalues and eigenfunctions of the integral operator $\mathcal K$ defined by

$$\mathcal{K}f(x) = \int_0^\pi k(x, y) f(y) \, dy.$$

7. (16 pts) Consider the initial-value problem

$$\begin{cases} u_t + u^2 u_x = 0, & x \in \mathbb{R}, \ t > 0, \\ u(x, 0) = f(x), & x \in \mathbb{R}, \end{cases}$$

where f is given by
$$f(x) = \begin{cases} 1, & x \le 0, \\ 1 - x, & 0 < x < 1, . \\ 0, & x \ge 1. \end{cases}$$

- (a) Find the characteristics and draw an accurate characteristic diagram.
- (b) Find the breaking time t_b .