
Normed Linear Spaces over C and R

1. The field F of scalars will always be C or R.

2. Definition: A linear space over the field F of scalars is a set V satisfying

a. V is closed under vector addition: For u and v in V , u + v is in V also.

b. Vector addition is commutative and associative: For all u, v and w in V ,

u + v = v + u,

(u + v) + w = u + (v + w).

c. There is a zero element (denoted 0) in V , such that v + 0 = v for all v in V .

d. For each v in V , there an additive inverse −v such that v + (−v) = 0. (Note: We
usually write u− v instead of u + (−v).)

e. V is closed under scalar multiplication: For α ∈ F and u ∈ V , αu ∈ V .

f. Scalar multiplication is associative and distributive: For all α and β in F and u and w
in V ,

α(βu) = (αβ)u,

(α + β)u = αu + βu,

α(u + w) = αu + αw.

g. 1 v = v for all v in V .

3. Example: Rn, with the usual operations, is a vector space over R.

4. Example: Cn, with the usual operations, is a vector space over C.

5. Note: Instead of the previous two examples, we could have simply stated that Fn,
with the usual operations, is a vector space over F.

6. Example: The set C[a, b] of F-valued continuous functions defined on [a, b] is a linear
space over F. (Note: Elements of C[a, b] are continuous from the right at a and from
the left at b.)

7. Example: The set Ck[a, b] of F-valued k-times continuously differentiable functions
defined on [a, b], is a linear space over F. (Again, the derivatives are taken from the
right at a and from the left at b.)



8. Example: Let B ⊆ Rn. The set L1(B) of functions f : Rn → F satisfying∫
B

|f(x)| dx < ∞, (1)

is a linear space over F.

9. Example: Let B ⊆ Rn. The set L2(B) of functions f : Rn → F satisfying∫
B

|f(x)|2 dx < ∞, (2)

is a linear space over F.

10. Definition: Let V be a linear space. If U ⊆ V is closed under vector addition and
scalar multiplication, then U is a subspace of V . A subspace is itself a linear space.

11. Example: Let V = R3. If U is a subspace of V , then either

a. U = R3,

b. U is a plane through the the origin,

c. U is a line through the origin,

d. U = {0}.

12. Example: Let [a, b] be a finite interval. The set C[a, b] is a subspace of L1[a, b].

13. Definition: A norm ‖ ‖ on a linear space V is a mapping from V to R satisfying

a. ‖v‖ ≥ 0 for all v ∈ V .

b. ‖v‖ = 0 if and only if v = 0.

c. ‖αv‖ = |α|‖v‖ for all α ∈ C and v ∈ V .

d. The triangle inequality: ‖u + v‖ ≤ ‖u‖+ ‖v‖ for all u and v in V .

The norm assigns to a vector a length or magnitude.

14. The distance between vectors v and w in a normed linear space V is ‖v − w‖. The
(closed) ball about v of radius r is

B(v, r) = {w ∈ V | ‖v − w‖ ≤ r}.

If you replace “less than or equal to” with “less than,” you get the open ball.

15. Example: Fn is a normed linear space with

‖z‖ = |z| =
{
|z1|2 + · · · |zn|2

} 1
2 . (3)



16. Note: There can be more than one norm on a linear space. For example

‖z‖ = |z1|+ · · ·+ |zn|, (4)

and
‖z‖ = max

1≤i≤n
|zi|, (5)

are also norms on Fn.

17. Example: C[a, b] is a normed linear space with the maximum (or L∞) norm

‖f‖ = max
[a,b]

|f(x)|. (6)

18. Example: Ck[a, b] is a normed linear space with

‖f‖ =
k∑

j=1

max
[a,b]

|f (j)(x)|. (7)

19. Example: L1(B) is a normed linear space with

‖f‖ =
∫

B

|f(x)| dx. (8)

20. Example: L2(B) is a normed linear space with

‖f‖ =
{∫

B

|f(x)|2 dx

} 1
2

. (9)

21. Definition: A sequence {vk} of vectors in a normed linear space V is convergent if
there is a v ∈ V such that

‖vk − v‖ → 0 as k →∞. (10)

We say that {vk} converges to v and write

lim
k→∞

vk = v,

or
vk → v as k →∞.



22. Definition: A sequence {vk} of vectors in a normed linear space V is Cauchy conver-
gent if

‖vm − vn‖ → 0 as m,n →∞. (11)

23. Definition: A normed linear space is complete if all Cauchy convergent sequences are
convergent. A complete normed linear space is called a Banach space.

24. C[a, b], Ck[a, b], L1(B) and L2(B) are all Banach spaces with respect to the given
norms.

25. Example: Let V be the set C[0, 2] of real-valued functions with norm

‖f‖ =
∫ 2

0

|f(x)| dx. (12)

Although V is a normed linear space, it is not a Banach space. To see this, let

φk(x) =
{

xk for 0 ≤ x ≤ 1,
1 for 1 ≤ x ≤ 2,

for integers k ≥ 1. Clearly, fk ∈ V . Since

‖fm − fn‖ =
∣∣∣∣ 1
n
− 1

m

∣∣∣∣ → 0 as m,n →∞,

the sequence {fk} is Cauchy convergent in V . Suppose that there were a function f in
V such that

‖fm − f‖ → 0 as m →∞.

It would have to be that

f(x) =
{

0 for 0 ≤ x < 1,
1 for 1 ≤ x ≤ 2,

which is discontinuous, and hence not in V . Thus the Cauchy convergent sequence
{fk} is not convergent (in the norm on V ), and V is therefore not a Banach space.

26. Why should you bother with the distinction between Banach spaces and incomplete
normed linear spaces? Many equations are solved by iterative procedures: We generate
a sequence {vk} of approximate solutions, hoping it will converge to a solution v. How
do you prove convergence? You don’t know if v even exists. If the vk live in a Banach
space V with norm ‖ ‖, it is only necessary to show that the sequence is Cauchy
convergent. Then (by the definition of completeness) you are guaranteed the existence
of a v ∈ V such that vk → v as k →∞.

27. A norm assigns a magnitude to a vector. We’d like a notion of angle as well. To this
end, we introduce inner products—generalizations of the dot product on R3.



28. Definition: An inner product on a linear space V over F is a mapping 〈 , 〉 from V ×V
to F satisfying

a. 〈v , v〉 ≥ 0 for all v ∈ V .

b. 〈v , v〉 = 0 if and only if v = 0.

c. 〈u , v〉 = 〈v , u〉∗ for all u and v in V .

d. 〈αu , v〉 = α〈u , v〉 for all α ∈ F and u and v in V .

e. 〈u + v , w〉 = 〈u , w〉+ 〈v , w〉 for all u, v and w in V .

29. Note: If V is a linear space over R, then 〈u , v〉 is a real number. In this case (c)
becomes

〈u , v〉 = 〈v , u〉, for all u and v in V .

30. Example: Fn is an inner product space: For x = (x1, . . . , xn) and y = (y1, . . . , yn),
in Fn,

〈x , y〉 = x1y
∗
1 + · · ·+ xny∗n. (13)

Note that when F = R, this reduces to the usual dot product on Rn:

〈x , y〉 = x · y = x1y1 + · · ·+ xnyn. (14)

31. Example: For a vector of positive weights w = (w1, . . . , wn),

〈x , y〉 = w1x1y
∗
1 + · · ·+ wnxny∗n, (15)

is an inner product on Fn.

32. Example: L2(B) is an inner product space with

〈f , g〉 =
∫

B

f(x)g(x)∗ dx. (16)

33. Example: Let w : Rn → R be bounded, real-valued and positive on B. Then for f
and g taking Rn to R,

〈f , g〉 =
∫

B

w(x)f(x)g(x)∗ dx, (17)

defines an inner product.

34. Let V be an inner product space. For v ∈ V , set

‖v‖ =
√
〈v , v〉. (18)



The notation suggests that (18) defines a norm on V . We’ll show that this is the case.

35. The Cauchy-Schwarz Inequality: For all u and v in V ,

|〈u , v〉| ≤ ‖u‖ ‖v‖. (19)

36. It follows easily from (19) that

‖u + v‖ ≤ ‖u‖+ ‖v‖. (20)

From (20) and properties (a), (b) and (d) of the inner product, we see that (18) really
does define a norm. Thus an inner product space is automatically a normed linear
space.

37. If the inner product space is L2(B), then the Cauchy-Schwarz inequality becomes

∣∣∣∣∫
B

f(x)g(x) dx

∣∣∣∣ ≤ {∫
B

|f(x)|2 dx

} 1
2

{∫
B

|g(x)|2 dx

} 1
2

.

38. An inner product space has a richer geometry than a space that is merely normed. In
a normed space we only have length. In an inner product space we have length and
angle: We define the angle θ between u and v in an inner product space by

cos θ =
〈u , v〉
‖u‖‖v‖

. (21)

This generalizes the formula for the angle between two vectors in C3.

39. Vectors u and v in an inner product space are called orthogonal if

〈u , v〉 = 0.

40. Definition: An inner product space that is complete with respect to the norm (18) is
called a Hilbert space.

41. Cn and L2(B) are Hilbert spaces with the given inner products. In a sense, there are
no more (separable) Hilbert spaces. Any n-dimensional Hilbert space is an algebraic
and geometric copy of Cn, and any infinite-dimensional (separable) Hilbert space is an
algebraic and geometric copy of L2(B).


