Normed Linear Spaces over C and R

- 1. The field F of scalars will always be C or R.
- 2. **Definition**: A linear space over the field **F** of scalars is a set V satisfying
- **a.** V is closed under vector addition: For u and v in V, u + v is in V also.
- **b.** Vector addition is commutative and associative: For all u, v and w in V,

$$u + v = v + u,$$

$$(u+v) + w = u + (v+w).$$

- **c.** There is a zero element (denoted 0) in V, such that v + 0 = v for all v in V.
- **d.** For each v in V, there an additive inverse -v such that v + (-v) = 0. (Note: We usually write u v instead of u + (-v).)
- **e.** V is closed under scalar multiplication: For $\alpha \in \mathbf{F}$ and $u \in V$, $\alpha u \in V$.
- **f.** Scalar multiplication is associative and distributive: For all α and β in **F** and u and w in V,

$$\alpha(\beta u) = (\alpha \beta) u,$$

$$(\alpha + \beta)u = \alpha u + \beta u,$$

$$\alpha(u+w) = \alpha u + \alpha w.$$

- **g**. 1v = v for all v in V.
- **3.** Example: \mathbb{R}^n , with the usual operations, is a vector space over \mathbb{R} .
- **4.** Example: \mathbb{C}^n , with the usual operations, is a vector space over \mathbb{C} .
- **5. Note:** Instead of the previous two examples, we could have simply stated that \mathbf{F}^n , with the usual operations, is a vector space over \mathbf{F} .
- **6. Example:** The set C[a, b] of **F**-valued continuous functions defined on [a, b] is a linear space over **F**. (Note: Elements of C[a, b] are continuous from the right at a and from the left at b.)
- 7. **Example**: The set $C^k[a,b]$ of **F**-valued k-times continuously differentiable functions defined on [a,b], is a linear space over **F**. (Again, the derivatives are taken from the right at a and from the left at b.)

8. Example: Let $B \subseteq \mathbf{R}^n$. The set $L^1(B)$ of functions $f: \mathbf{R}^n \to \mathbf{F}$ satisfying

$$\int_{B} |f(x)| \, dx < \infty,\tag{1}$$

is a linear space over \mathbf{F} .

9. Example: Let $B \subseteq \mathbf{R}^n$. The set $L^2(B)$ of functions $f: \mathbf{R}^n \to \mathbf{F}$ satisfying

$$\int_{B} |f(x)|^2 dx < \infty, \tag{2}$$

is a linear space over \mathbf{F} .

- 10. **Definition**: Let V be a linear space. If $U \subseteq V$ is closed under vector addition and scalar multiplication, then U is a *subspace* of V. A subspace is itself a linear space.
- 11. Example: Let $V = \mathbb{R}^3$. If U is a subspace of V, then either
 - **a**. $U = \mathbf{R}^3$,
- **b**. *U* is a plane through the the origin,
- **c**. *U* is a line through the origin,
- **d**. $U = \{0\}$.
- **12**. **Example**: Let [a, b] be a finite interval. The set C[a, b] is a subspace of $L^1[a, b]$.
- 13. **Definition**: A norm $\| \|$ on a linear space V is a mapping from V to \mathbf{R} satisfying
- **a**. $||v|| \ge 0$ for all $v \in V$.
- **b**. ||v|| = 0 if and only if v = 0.
- **c**. $\|\alpha v\| = |\alpha| \|v\|$ for all $\alpha \in \mathbf{C}$ and $v \in V$.
- **d**. The triangle inequality: $||u+v|| \le ||u|| + ||v||$ for all u and v in V.

The norm assigns to a vector a length or magnitude.

14. The distance between vectors v and w in a normed linear space V is ||v - w||. The (closed) ball about v of radius r is

$$B(v,r) = \{ w \in V \mid ||v - w|| \le r \}.$$

If you replace "less than or equal to" with "less than," you get the open ball.

15. Example: \mathbf{F}^n is a normed linear space with

$$||z|| = |z| = \{ |z_1|^2 + \dots + |z_n|^2 \}^{\frac{1}{2}}.$$
 (3)

16. Note: There can be more than one norm on a linear space. For example

$$||z|| = |z_1| + \dots + |z_n|,$$
 (4)

and

$$||z|| = \max_{1 \le i \le n} |z_i|,\tag{5}$$

are also norms on \mathbf{F}^n .

17. Example: C[a,b] is a normed linear space with the maximum (or L^{∞}) norm

$$||f|| = \max_{[a,b]} |f(x)|.$$
 (6)

18. Example: $C^k[a,b]$ is a normed linear space with

$$||f|| = \sum_{j=1}^{k} \max_{[a,b]} |f^{(j)}(x)|.$$
 (7)

19. Example: $L^1(B)$ is a normed linear space with

$$||f|| = \int_{B} |f(x)| dx.$$
 (8)

20. **Example**: $L^2(B)$ is a normed linear space with

$$||f|| = \left\{ \int_{B} |f(x)|^{2} dx \right\}^{\frac{1}{2}}.$$
 (9)

21. Definition: A sequence $\{v_k\}$ of vectors in a normed linear space V is convergent if there is a $v \in V$ such that

$$||v_k - v|| \to 0 \quad \text{as} \quad k \to \infty.$$
 (10)

We say that $\{v_k\}$ converges to v and write

$$\lim_{k \to \infty} v_k = v,$$

or

$$v_k \to v$$
 as $k \to \infty$.

22. Definition: A sequence $\{v_k\}$ of vectors in a normed linear space V is Cauchy convergent if

$$||v_m - v_n|| \to 0 \quad \text{as} \quad m, n \to \infty.$$
 (11)

- **23**. **Definition**: A normed linear space is complete if all Cauchy convergent sequences are convergent. A complete normed linear space is called a Banach space.
- **24.** C[a,b], $C^k[a,b]$, $L^1(B)$ and $L^2(B)$ are all Banach spaces with respect to the given norms.
- **25.** Example: Let V be the set C[0,2] of real-valued functions with norm

$$||f|| = \int_0^2 |f(x)| \, dx. \tag{12}$$

Although V is a normed linear space, it is not a Banach space. To see this, let

$$\phi_k(x) = \begin{cases} x^k & \text{for } 0 \le x \le 1, \\ 1 & \text{for } 1 \le x \le 2, \end{cases}$$

for integers $k \geq 1$. Clearly, $f_k \in V$. Since

$$||f_m - f_n|| = \left|\frac{1}{n} - \frac{1}{m}\right| \to 0 \text{ as } m, n \to \infty,$$

the sequence $\{f_k\}$ is Cauchy convergent in V. Suppose that there were a function f in V such that

$$||f_m - f|| \to 0$$
 as $m \to \infty$.

It would have to be that

$$f(x) = \begin{cases} 0 & \text{for } 0 \le x < 1, \\ 1 & \text{for } 1 \le x \le 2, \end{cases}$$

which is discontinuous, and hence not in V. Thus the Cauchy convergent sequence $\{f_k\}$ is not convergent (in the norm on V), and V is therefore not a Banach space.

- 26. Why should you bother with the distinction between Banach spaces and incomplete normed linear spaces? Many equations are solved by iterative procedures: We generate a sequence $\{v_k\}$ of approximate solutions, hoping it will converge to a solution v. How do you prove convergence? You don't know if v even exists. If the v_k live in a Banach space V with norm $\|\cdot\|$, it is only necessary to show that the sequence is Cauchy convergent. Then (by the definition of completeness) you are guaranteed the existence of a $v \in V$ such that $v_k \to v$ as $k \to \infty$.
- **27**. A norm assigns a magnitude to a vector. We'd like a notion of angle as well. To this end, we introduce inner products—generalizations of the dot product on \mathbb{R}^3 .

- **28. Definition**: An inner product on a linear space V over \mathbf{F} is a mapping \langle , \rangle from $V \times V$ to \mathbf{F} satisfying
 - **a**. $\langle v, v \rangle \ge 0$ for all $v \in V$.
- **b**. $\langle v, v \rangle = 0$ if and only if v = 0.
- **c**. $\langle u, v \rangle = \langle v, u \rangle^*$ for all u and v in V.
- **d**. $\langle \alpha u, v \rangle = \alpha \langle u, v \rangle$ for all $\alpha \in \mathbf{F}$ and u and v in V.
- **e**. $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ for all u, v and w in V.
- **29.** Note: If V is a linear space over \mathbf{R} , then $\langle u, v \rangle$ is a real number. In this case (c) becomes

$$\langle u, v \rangle = \langle v, u \rangle$$
, for all u and v in V .

30. Example: \mathbf{F}^n is an inner product space: For $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$, in \mathbf{F}^n ,

$$\langle x, y \rangle = x_1 y_1^* + \dots + x_n y_n^*. \tag{13}$$

Note that when $\mathbf{F} = \mathbf{R}$, this reduces to the usual dot product on \mathbf{R}^n :

$$\langle x, y \rangle = x \cdot y = x_1 y_1 + \dots + x_n y_n. \tag{14}$$

31. Example: For a vector of positive weights $w = (w_1, \ldots, w_n)$,

$$\langle x, y \rangle = w_1 x_1 y_1^* + \dots + w_n x_n y_n^*, \tag{15}$$

is an inner product on \mathbf{F}^n .

32. **Example**: $L^2(B)$ is an inner product space with

$$\langle f, g \rangle = \int_B f(x)g(x)^* dx.$$
 (16)

33. Example: Let $w: \mathbf{R}^n \to \mathbf{R}$ be bounded, real-valued and positive on B. Then for f and g taking \mathbf{R}^n to \mathbf{R} ,

$$\langle f, g \rangle = \int_{B} w(x) f(x) g(x)^* dx,$$
 (17)

defines an inner product.

34. Let V be an inner product space. For $v \in V$, set

$$||v|| = \sqrt{\langle v, v \rangle}. \tag{18}$$

The notation suggests that (18) defines a norm on V. We'll show that this is the case.

35. The Cauchy-Schwarz Inequality: For all u and v in V,

$$|\langle u, v \rangle| \le ||u|| \, ||v||. \tag{19}$$

36. It follows easily from (19) that

$$||u+v|| \le ||u|| + ||v||. \tag{20}$$

From (20) and properties (a), (b) and (d) of the inner product, we see that (18) really does define a norm. Thus an inner product space is automatically a normed linear space.

37. If the inner product space is $L^2(B)$, then the Cauchy-Schwarz inequality becomes

$$\left| \int_{B} f(x)g(x) \, dx \right| \le \left\{ \int_{B} |f(x)|^{2} \, dx \right\}^{\frac{1}{2}} \left\{ \int_{B} |g(x)|^{2} \, dx \right\}^{\frac{1}{2}}.$$

38. An inner product space has a richer geometry than a space that is merely normed. In a normed space we only have length. In an inner product space we have length and angle: We define the angle θ between u and v in an inner product space by

$$\cos \theta = \frac{\langle u, v \rangle}{\|u\| \|v\|}.$$
 (21)

This generalizes the formula for the angle between two vectors in \mathbb{C}^3 .

39. Vectors u and v in an inner product space are called orthogonal if

$$\langle u, v \rangle = 0.$$

- **40**. **Definition**: An inner product space that is complete with respect to the norm (18) is called a Hilbert space.
- **41.** \mathbf{C}^n and $L^2(B)$ are Hilbert spaces with the given inner products. In a sense, there are no more (separable) Hilbert spaces. Any n-dimensional Hilbert space is an algebraic and geometric copy of \mathbf{C}^n , and any infinite-dimensional (separable) Hilbert space is an algebraic and geometric copy of $L^2(B)$.