Normed Linear Spaces over C and R
. The field F of scalars will always be C or R.

. Definition: A linear space over the field F of scalars is a set V satisfying
. V is closed under vector addition: For v and v in V', u + v is in V also.

. Vector addition is commutative and associative: For all v, v and w in V,
uU+v=v+u,
(u+v)+w=u+(v+w).

. There is a zero element (denoted 0) in V, such that v + 0 = v for all v in V.

d. For each v in V, there an additive inverse —v such that v + (—v) = 0. (Note: We

usually write v — v instead of u + (—v).)
. V is closed under scalar multiplication: For « € F and u € V, au € V.

. Scalar multiplication is associative and distributive: For all « and § in F and v and w
inV,
a(fu) = (af)u,
(a+ Blu = au + Pu,
a(u+w) = au + aw.
. lv=wvforall vin V.
. Example: R", with the usual operations, is a vector space over R.

. Example: C", with the usual operations, is a vector space over C.

. Note: Instead of the previous two examples, we could have simply stated that F",
with the usual operations, is a vector space over F.

. Example: The set Cla, b] of F-valued continuous functions defined on [a, b] is a linear
space over F. (Note: Elements of C[a,b] are continuous from the right at a and from
the left at b.)

. Example: The set C*[a,b] of F-valued k-times continuously differentiable functions
defined on [a, b], is a linear space over F. (Again, the derivatives are taken from the
right at a and from the left at b.)
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. Example: Let B C R". The set L'(B) of functions f : R" — F satisfying

/’f )| dz < oo, (1)

is a linear space over F.

. Example: Let B C R™. The set L?(B) of functions f : R® — F satisfying

/B (@) de < oo, 2)

is a linear space over F.

Definition: Let V be a linear space. If U C V is closed under vector addition and
scalar multiplication, then U is a subspace of V. A subspace is itself a linear space.

Example: Let V = R3. If U is a subspace of V, then either
U =R3,
U is a plane through the the origin,

c. U is a line through the origin,
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U = {0}.

Example: Let [a,b] be a finite interval. The set Cla, b] is a subspace of Ll|a, b].

Definition: A norm || || on a linear space V' is a mapping from V to R satisfying
|lv]| > 0 for all v € V.

||v]| = 0 if and only if v = 0.

law| = |al||v|| for all « € C and v € V.

The triangle inequality: ||u + v|| < ||u|| + ||v]| for all u and v in V.

The norm assigns to a vector a length or magnitude.

The distance between vectors v and w in a normed linear space V is |[v — w|. The
(closed) ball about v of radius r is

Bu,r)={weV | [[v—w| <r}.

If you replace “less than or equal to” with “less than,” you get the open ball.

Example: F™ is a normed linear space with

1
Izl = [zl = { |21 ]* + - -2l } 7 . (3)
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Note: There can be more than one norm on a linear space. For example
Izl = lz1] + -+ [2nl;

and

l2ll = max i,

are also norms on F™.

Example: Cfa,b] is a normed linear space with the maximum (or L°°) norm

il = max |/ ()]

Example: C*[a,b] is a normed linear space with

k

£ = max|f9 (x)].

= [ad]

Example: L!'(B) is a normed linear space with

1l = /B ()| de.

Example: L?(B) is a normed linear space with

in={/ If(w)|2dw}%-

(9)

Definition: A sequence {v} of vectors in a normed linear space V is convergent if

there is a v € V such that
|lvk —v|]| = 0 as k — oc.
We say that {vy} converges to v and write
kli»H;o Uk =0

or
vy — v as k — oo.

(10)
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Definition: A sequence {vy} of vectors in a normed linear space V is Cauchy conver-
gent if
|lvm —vn|| = 0 as m,n — oco. (11)

Definition: A normed linear space is complete if all Cauchy convergent sequences are
convergent. A complete normed linear space is called a Banach space.

Cla,b], C*[a,b], L*(B) and L?(B) are all Banach spaces with respect to the given
norms.

Example: Let V' be the set C[0, 2] of real-valued functions with norm

2
1= [ 1f@lde (12)
Although V' is a normed linear space, it is not a Banach space. To see this, let

() = 2k for 0 <z <1,
& 1 forl<zx<2,

for integers k > 1. Clearly, fr € V. Since
1 1

It =l = |~

‘—>O as m,n — oo,

the sequence {f} is Cauchy convergent in V. Suppose that there were a function f in
V such that
|fm — fll =0 as m — oc.

It would have to be that
0 for0<zx<1,

f(x):{l for 1 <z <2,

which is discontinuous, and hence not in V. Thus the Cauchy convergent sequence
{fr} is not convergent (in the norm on V'), and V is therefore not a Banach space.

Why should you bother with the distinction between Banach spaces and incomplete
normed linear spaces? Many equations are solved by iterative procedures: We generate
a sequence {vy} of approximate solutions, hoping it will converge to a solution v. How
do you prove convergence? You don’t know if v even exists. If the vy live in a Banach
space V' with norm || ||, it is only necessary to show that the sequence is Cauchy
convergent. Then (by the definition of completeness) you are guaranteed the existence
of a v € V such that vy, — v as k — oo.

A norm assigns a magnitude to a vector. We’d like a notion of angle as well. To this
end, we introduce inner products—generalizations of the dot product on R3.
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Definition: An inner product on a linear space V over F is a mapping (,) from V' x V
to F satisfying

) >0foralvelV.
v,v) = 0 if and only if v = 0.
) = (v,u)* for all uw and v in V.
au,v) = alu,v) for all « € F and v and v in V.

u+v,w) = (u,w)~+ (v,w) for all u, v and w in V.

Note: If V is a linear space over R, then (u,v) is a real number. In this case (c)
becomes
(u,v) = (v,u), foralluandvinV.

Example: F" is an inner product space: For x = (z1,...,2,) and y = (Y1,...,¥n),
in F",

(T, y) =1y + - + 2y (13)
Note that when F = R, this reduces to the usual dot product on R":

(,y) =z -y=2191 + + TnYn. (14)
Example: For a vector of positive weights w = (wy,...,wy,),
<'T ) y> = wll'lyi +o 4+ wnxny;kp (15)

is an inner product on F".

Example: L?(B) is an inner product space with

<ﬁm=éj@M@Ww (16)

Example: Let w : R® — R be bounded, real-valued and positive on B. Then for f
and g taking R™ to R,

<ﬁm=éw@ﬂWMVm, (17)

defines an inner product.

Let V be an inner product space. For v € V, set

[oll = V{v,v). (18)
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The notation suggests that (18) defines a norm on V. We’ll show that this is the case.

The Cauchy-Schwarz Inequality: For all v and v in V,

[(w, v)] < [|ull o] (19)

It follows easily from (19) that
lu+ o] < flu]l + [Jo]. (20)
From (20) and properties (a), (b) and (d) of the inner product, we see that (18) really

does define a norm. Thus an inner product space is automatically a normed linear
space.

If the inner product space is L?(B), then the Cauchy-Schwarz inequality becomes

{/ |f(w)l2dx}% {/B|g<x>|2dx}%.

An inner product space has a richer geometry than a space that is merely normed. In
a normed space we only have length. In an inner product space we have length and
angle: We define the angle 6 between u and v in an inner product space by

/B f(@)g(x) d

cos = (21)

This generalizes the formula for the angle between two vectors in C3.

Vectors u and v in an inner product space are called orthogonal if

(u,v) =0.

Definition: An inner product space that is complete with respect to the norm (18) is
called a Hilbert space.

C" and L?(B) are Hilbert spaces with the given inner products. In a sense, there are
no more (separable) Hilbert spaces. Any n-dimensional Hilbert space is an algebraic
and geometric copy of C", and any infinite-dimensional (separable) Hilbert space is an
algebraic and geometric copy of L?(B).



