1. Physicists generally like to take the complex conjugate of the first argument in the inner product. Hence, in this set of notes, the $L^2(\mathbf{R})$ inner product is

$$\langle f, g \rangle = \int \bar{f}(x)g(x) dx.$$

We have the Schwarz inequality

$$|\langle f, g \rangle| \le ||f|| \, ||g||, \tag{1}$$

and the Plancherel identity,

$$\langle f, g \rangle = \langle \hat{f}, \hat{g} \rangle \tag{2}$$

Setting g = f in (2), we get

$$\int |f(x)|^2 dx = \int |\hat{f}(k)|^2 dk.$$
 (3)

2. Let ψ be the wave function, A the position operator and B the momentum:

$$\int |\psi(x)|^2 dx = 1,\tag{4}$$

$$Af(x) = xf(x)$$
 and $Bf(x) = (2\pi i)^{-1}f'(x)$. (5)

The expected (average) value of the position is

$$E(A) = \langle \psi, A\psi \rangle = \int x |\psi(x)|^2 dx. \tag{6}$$

The average value of the momentum is

$$E(B) = \langle \psi, B\psi \rangle = \langle \hat{\psi}, \widehat{B\psi} \rangle = \int k |\hat{\psi}(k)|^2 dk.$$
 (7)

The variance of the position is

$$Var(A) = E[A - E(A)]^{2} = \int [x - E(A)]^{2} |\psi(x)|^{2} dx.$$

The variance of the momentum is

$$Var(B) = E[B - E(B)]^{2} = \int [k - E(B)]^{2} |\hat{\psi}(k)|^{2} dk.$$

Heisenberg's invariance principle (in mathematical form) asserts that

$$Var(A) \times Var(B) \ge C > 0.$$
 (8)

3. Before proving (8) we'll simplify the variances. Clearly,

$$\operatorname{Var}(A) = \int x^2 |\psi_1(x)|^2 dx, \tag{9}$$

where

$$\psi_1(x) = \psi(x + E(A)).$$

And since

$$\left|\hat{\psi}(k)\right| = \left|\hat{\psi}_1(k)\right|,$$

$$Var(B) = \int [k - E(B)]^2 |\hat{\psi}_1(k)|^2 dk = \int k^2 |\hat{\psi}_1(k + E(B))|^2 dk.$$
 (10)

Now set

$$\hat{\psi}_2(k) = \hat{\psi}_1(k + E(B)).$$

Thus,

$$Var(B) = \int k^2 |\hat{\psi}_2(k)|^2 dk,$$
(11)

and

$$|\psi_1(x)| = |\psi_2(x)|.$$

Consequently,

$$Var(A) = \int x^{2} |\psi_{2}(x)|^{2} dx.$$
 (12)

So by (8), (12) and (11), Heisenberg's principle asserts that

$$\int x^2 |\psi_2(x)|^2 \, dx \times \int k^2 |\hat{\psi}_2(k)|^2 \, dk \ge C > 0.$$

4. We'll also need the inequality,

$$|x\bar{f}(x)f'(x)| \ge x \operatorname{Re} \bar{f}(x)f'(x)$$

$$= \frac{x}{2} \left[\bar{f}(x)f'(x) + f(x)\bar{f}'(x) \right]$$

$$= \frac{x}{2} \frac{d}{dx} \bar{f}(x)f(x)$$

$$= \frac{x}{2} \frac{d}{dx} |f(x)|^{2}.$$
(13)

5. Weyl's proof of Heisenberg's Inequality: Let f be in the Schwarz class. Then

$$\int x^2 |f(x)|^2 dx \times \int k^2 |\hat{f}(k)| dk \ge \frac{1}{16\pi^2} ||f||^4.$$
 (14)

$$4\pi^{2} \int x^{2} |f(x)|^{2} dx \times \int k^{2} |\hat{f}(k)|^{2} dk = \int x^{2} |f(x)|^{2} dx \times \int |2\pi i k \hat{f}(k)|^{2} dk$$

$$= \int x^{2} |f(x)|^{2} dx \times \int |\hat{f}'(k)|^{2} dk$$

$$= \int x^{2} |f(x)|^{2} dx \times \int |f'(x)|^{2} dk$$

$$= ||xf||^{2} ||f'||^{2}$$

$$\geq \left[\int |xf^{*}(x)f'(x)| dx \right]^{2}$$

$$\geq \frac{1}{4} \left[\int x \frac{d}{dx} |f(x)|^{2} dx \right]^{2}$$

$$= \frac{1}{4} ||f||^{4}. \tag{15}$$

Now set $f = \psi_2$ so that

$$||f||^2 = ||\psi_2||^2 = ||\psi_1||^2 = ||\hat{\psi}_1||^2 = ||\hat{\psi}||^2 = ||\psi||^2 = 1,$$

and the result follows.