
The Fourier Transform 2

1. In class we used eigenfunction expansions to prove the Fourier inversion theorem and
Plancherel’s identity for “nice” functions of compact support on R. You can also use
approximate identities to establish these results. Here are some proofs (with a little hand-
waving).

2. Proposition: If u(x) decays rapidly as |x| → ∞, and û(ξ) as |ξ| → ∞, then

u(x) =
∫

û(ξ)e2πiξ·x dξ. (1)

Proof: Let ε > 0. Then∫
û(ξ)e2πiξ·x dξ =

∫ [∫
u(y)e−2πiξ·y dy

]
e2πiξ·x dξ

= lim
ε→0

∫
u(y)

[∫
e2πiξ·(x−y)e−4επ2|ξ|2 dξ

]
dy

= lim
ε→0

∫
Gε(x− y)u(y) dy

=
∫

δ(x− y)u(y) dy

= u(x).

3. Note: You have to take some care with the interpretation of (1). In what sense does
equality hold? If u decays rapidly as |x| → ∞ as is continuous, then equality in (1) is
pointwise. If u is in L2(Rn) but not necessarily continuous, then equality holds in the
sense of L2: ∫

|u(x)− (û)̌ (x)|2 dx = 0.

4. Proposition: For u and v in L2(Rn),

〈û , v̂〉 = 〈u , v〉 (2)

and hence
‖û‖2 = ‖u‖2. (3)

These are versions of the Plancherel identity.



Proof: We’ll use the fact that the Gauss kernel is an approximate identity.

〈û , v̂〉 =
∫

û(ξ)¯̂v(ξ) dξ

=
∫ [∫

u(x)e−2πiξ·x dx

] [∫
v̄(y)e−2πiξ·y dy

]
dξ

= lim
ε→0

∫
u(x)

∫
v̄(y)

∫
e−4επ2|ξ|2e2πiξ·(x−y) dξ dy dx

= lim
ε→0

∫
u(x)

∫
v̄(y)Gε(y − x) dy dx

=
∫

u(x)
∫

v̄(y)δ(y − x) dy dx

=
∫

u(x)v̄(x) dx

= 〈u , v〉.

To get (3) from (2), just take v = u.

5. An operator that preserves inner products is called unitary. Since

〈Fu ,Fv〉 = 〈u , v〉

the Fourier transform is a unitary operator on L2(Rn).

6. Let ε > 0 and ξ ∈ R. Find the function Pε(x) whose Fourier transform is

P̂ε(ξ) = e−2πε|ξ|.

By the inversion theorem,

Pε(x) =
∫

P̂ε(ξ)e2πiξx dξ =
1
π

ε

ε2 + x2
.

The function Pε is called the Possion kernel (for the upper half-plane). It is also an
approximate identity as ε ↓ 0.

7. The characteristic or indicator of a set A is

χA(x) =
{

1 for x ∈ A,
0 for x 6= A.



Let A = [−a, a] in R. The function whose Fourier transform is χA(ξ) is

f(x) = χ̌A(x)

=
∫

χ(ξ)e2πiξx dξ

=
e2πiax − e−2πiax

2πix

=
sin (2πax)

πx
.

8. We can extend the Fourier and inverse Fourier transforms to objects like the Dirac delta
function (not really a function) and to functions like f(x) ≡ 1, for which the Fourier
integral (1) doesn’t converge. By the defining property of the delta function,

F [δ(x− y)] =
∫

δ(x− y)e−2πiξ·x dξ = e−2πiξ·y. (4)

If y = 0, this becomes
δ̂(x) = 1.

Thus,
F−1[e−2πiξ·y] = δ(x− y),

and
1̌(x) = δ(x).

By the definition of the Fourier and inverse Fourier transforms,

f̂(ξ) = f̌(−ξ). (5)

And thus, formally, for fixed y ∈ Rn,

F [e2πiξ·y] = F−1[e−2πiξ·y] = δ(x− y).

This sort of formal calculation can be made rigorous with the theory of tempered distri-
butions.


