Eigenfunction Expansions 3

1. We can extend the notion of self-adjointness to regular boundary value problems of any order. Let L be an nth order, linear, differential operator

$$L = \sum_{k=0}^{n} a_k(x) D^k,$$

whose the coefficients a_k are smooth and complex-valued, with $a_n(x) \neq 0$ on $[a, b]$. Let B_1, \ldots, B_n be linear boundary operators of order at most $n-1$. Consider the boundary value problem

$$(P_0) \begin{cases} L X = \lambda X & \text{for } a < x < b, \\ B_i X = 0 & \text{for } i = 1, \ldots, n. \end{cases}$$

Integration by parts yields

$$\int_a^b L X(x) \bar{Y}(x) \, dx = \mathcal{B}(X, \bar{Y}) + \int_a^b X(x) \overline{L^* Y(x)} \, dx,$$

where $\mathcal{B}(X, \bar{Y})$ represents the boundary terms and

$$L^* Y = \sum_{k=0}^{n} (-1)^k D^k (\bar{a}_k(x) Y),$$

is the formal adjoint of L. In terms of the inner product, this is

$$\langle L X , Y \rangle = \mathcal{B}(X, \bar{Y}) + \langle X , L^* Y \rangle.$$ \hspace{1cm} (4)

2. If

$$L = L^*, \quad \text{and} \quad \mathcal{B}(X, \bar{Y}) = 0,$$

for all X and Y in the domain of L (i.e. for all smooth X and Y satisfying the boundary conditions), then

$$\langle L X , Y \rangle = \langle X , L Y \rangle.$$ \hspace{1cm} (5)

When this is the case, the problem is called self-adjoint.

3. The familiar results from the second-order case still pertain.

a. The eigenvalues of a self-adjoint problem are real.

b. Let (P_0) be self-adjoint, and $\lambda \neq \mu$ be eigenvalues. If X and Y are eigenvectors belonging to λ and μ respectively, then $\langle X , Y \rangle = 0$. (Thus the eigenspaces of λ and μ are orthogonal.) Each eigenspace can have dimension at most n.
c. Let (P_0) be self-adjoint, and have eigenvalues $\{\lambda_k\}$ with associated eigenspaces $\{E_{\lambda_k}\}$. Let O_k be an orthonormal basis for E_{λ_k}. Then

$$O = \bigcup_k O_k,$$

is an orthonormal basis for $L^2[a,b]$.

4. Example: Let L be the Dirac operator,

$$L = \frac{1}{i} \frac{d}{dx},$$

and B the boundary operator

$$BX = X(0) - X(1).$$

The problem

$$(P_1) \begin{cases} LX = \lambda X & \text{for } 0 < x < 1, \\ BX = 0, \end{cases}$$

is self-adjoint.

5. The eigenvalues of (P_1) are

$$\lambda_k = 2\pi ik \quad \text{for} \quad k = 0, \pm 1, \pm 2, \ldots$$

The eigenspaces are all one-dimensional, each with an orthonormal basis consisting of a single eigenfunction

$$e_k(x) = e^{2\pi ikx}.$$

Thus,

$$O = \{e^{2\pi ikx}\}_{k \in \mathbb{Z}},$$

is an orthonormal basis of $L^2[0,1]$. A function $f \in L^2[0,1]$ has the Fourier expansion

$$f = \sum_{k=-\infty}^{\infty} \hat{f}(k)e_k,$$

where

$$\hat{f}(k) = \int_0^1 f(x)e^{-2\pi ikx} \, dx.$$