1. **Example:** Let $u(x,t)$ be the density of a gas in a straight, narrow, cylindrical tube of length 1. Let f be the initial density. Assume that the ends of the tube are plugged. Thus u satisfies the initial-boundary value problem with “no-flux” boundary conditions:

$$
(P_0) \begin{cases}
 u_t - ku_{xx} = 0, & \text{for } 0 < x < 1, \ t > 0, \\
 u(x,0) = f(x), \\
 u_x(0,t) = 0, \\
 u_x(1,t) = 0.
\end{cases}
$$

We separate variables:

$$u(x,t) = T(t)X(x), \quad (1)$$

and see that

$$T'(t) = \lambda kT(t), \quad (2)$$

and

$$
(P_1) \begin{cases}
 X'' = \lambda X, & \text{for } 0 < x < 1, \\
 X'(0) = 0, \\
 X'(1) = 0,
\end{cases}
$$

for some constant λ. Problem (P_1) is called an eigenvalue problem. Let

$$L = \frac{d^2}{dx^2} = D^2,$$

and define the linear boundary operators

$$B_1 X = X'(0),$$

and

$$B_2 X = X'(1).$$

With this notation, (P_1) is

$$
(P_1) \begin{cases}
 LX = \lambda X, & \text{for } 0 < x < 1, \\
 B_1 X = 0, \\
 B_2 X = 0.
\end{cases}
$$

Since the first boundary condition involves X only at $x = 0$, and the second, only at $x = 1$, the boundary conditions are called *separated*.

2. **Example:** Suppose now $u(x,t)$ represents the temperature of a thin, insulated, wire ring of circumference 1. Here, the spatial variable x represents arclength along the
ring, measured widdershins (counterclockwise). We thus have the periodic boundary conditions
\[u(0, t) = u(1, t), \]
and
\[u_x(0, t) = u_x(1, t). \]
With the initial temperature distribution \(f \), we have the initial boundary value problem
\[
\begin{cases}
 u_t - ku_{xx} = 0, & \text{for } 0 < x < 1, \ t > 0, \\
 u(x, 0) = f(x), \\
 u(0, t) - u(1, t) = 0, \\
 u_x(0, t) - u_x(1, t) = 0.
\end{cases}
\]
We set
\[u(x, t) = T(t)X(x), \]
and obtain
\[T'(t) = \lambda k T(t), \]
and
\[
\begin{cases}
 X'' = \lambda X, & \text{for } 0 < x < 1, \\
 X(0) - X(1) = 0, \\
 X'(0) - X'(1) = 0,
\end{cases}
\]
for some constant \(\lambda \). If we set
\[L = D^2, \]
and define the linear boundary operators
\[B_1 X = X(0) - v(1), \]
and
\[B_2 X = X'(0) - v'(1), \]
\((P_3)\) becomes
\[
\begin{cases}
 LX = \lambda X, & \text{for } 0 < x < 1, \\
 B_1 X = 0, \\
 B_2 X = 0.
\end{cases}
\]
3. We’ll say that a boundary operator \(B_i \) is of order \(k \) if it contains derivatives up to but not exceeding the \(k \)th. In the first example, the both boundary operators are of order 1. In the second, \(B_1 \) is of order 0 and \(B_1 \) of order 1.

4. Let \([a, b]\) be a finite interval. Define the second-order, linear differential operator
\[L = a_2(x)D^2 + a_1(x)D + a_0, \]
where the a_i are smooth and complex-valued, and $a_2(x) \neq 0$ on $[a, b]$. Let B_1 and B_2 be linear boundary operators of at most the first order. Consider the problem

$$
(P_4) \begin{cases}
LX = \lambda X, & \text{for } a < x < b, \\
B_1X = 0, \\
B_2X = 0.
\end{cases}
$$

5. **Note:** The function $X \equiv 0$ is a solution (called the trivial solution) to (P_4). A solution X that is not identically zero is called nontrivial.

6. **Note:** We haven’t been specific about the domain of L, that is, the class of functions X on which L operates. We require that

a. X, X' and X'' be in $L^2[a, b]$,

b. $B_1X = B_2X = 0$.

For practical purposes, you don’t have to worry about (a). Just remember that functions in the domain of L have to satisfy the boundary conditions.

7. **Linear algebraic digression:** Let $A = (a_{ij})$ be a complex, $n \times n$ matrix, and λ a scalar. If the equation

$$AX = \lambda X, \quad (6)$$

has a solution $X \neq 0$, then λ is an eigenvalue of A. Any vector X satisfying (6) is an eigenvector belonging to λ. Note that $X = 0$ (i.e. the zero vector in \mathbb{C}^n) is an eigenvector belonging to every eigenvalue.

8. **Proposition:** The set of eigenvectors belonging to an eigenvalue λ is a linear subspace of \mathbb{C}^n. (It is called the eigenspace of λ.)

9. Let $\langle \cdot, \cdot \rangle$ be the standard inner product on \mathbb{C}^n. Let $A^* = (\overline{a_{ji}})$ and be the adjoint of A. Then

$$\langle AX, Y \rangle = \langle X, A^*Y \rangle, \quad (7)$$

for all X and Y in \mathbb{C}^n.

10. A is called self-adjoint if $A = A^*$. If A is self-adjoint then (7) becomes

$$\langle AX, Y \rangle = \langle X, AY \rangle, \quad (8)$$

for all X and Y in \mathbb{C}^n. This can be used to prove two important propositions:

11. **Proposition:** The eigenvalues of a self-adjoint matrix are real.

12. **Proposition:** Let A be a self-adjoint matrix. If X and Y be eigenvectors belonging respectively to the distinct eigenvalues μ and λ, then $\langle X, Y \rangle = 0$. Thus eigenspaces of distinct eigenvalues of the self-adjoint matrix A are orthogonal.
13. **Definition:** Consider \((P_4)\) with \(\lambda\) fixed.

\[
\begin{cases}
 LX = \lambda X, & \text{for } a < x < b, \\
 B_1 X = 0, \\
 B_2 X = 0.
\end{cases}
\]

If there is a nontrivial solution to this problem, then \(\lambda\) is called an eigenvalue. *Any* solution is called an eigenfunction belonging to \(\lambda\). Note that the trivial solution \(X \equiv 0\) is an eigenfunction of every eigenvalue.

14. **Proposition:** The set of eigenfunctions belonging to an eigenvalue \(\lambda\) forms a vector space. (This is called the eigenspace of \(\lambda\). It is a subspace of \(L^2[a, b]\).)

15. **Self-Adjoint Problems:** Integration by parts yields

\[
\int_a^b LX(x)\bar{Y}(x) \, dx = B(X, \bar{Y}) + \int_a^b X(x)L^*Y(x) \, dx, \tag{9}
\]

where \(B(X, \bar{Y})\) represents the boundary terms and

\[
L^*Y = (\bar{a}_2 Y)'' - (\bar{a}_1 Y)' + \bar{a}_0 Y, \tag{10}
\]

is the formal adjoint of \(L\). If \(\langle , \rangle\) is the \(L^2\) inner product on \([a, b]\), then (9) becomes

\[
\langle LX, Y \rangle = B(X, Y) + \langle X, L^*Y \rangle. \tag{11}
\]

16. If

\[
L = L^*, \quad \text{and} \quad B(X, \bar{Y}) = 0,
\]

for all \(X\) and \(Y\) in the domain of \(L\), then

\[
\langle LX, Y \rangle = \langle X, LY \rangle. \tag{12}
\]

When this is the case, the problem is called *self-adjoint*.

17. **Example:** Problems \((P_1)\) and \((P_3)\) are self-adjoint.

18. **Proposition:** The eigenvalues of a self-adjoint problem are real.

19. **Proposition:** Let \((P_4)\) be self-adjoint. and let \(\lambda \neq \mu\) be eigenvalues. If \(Y\) and \(Z\) are eigenvectors belonging to \(\lambda\) and \(\mu\) respectively, then \(\langle Y, Z \rangle = 0\). (Thus the eigenspaces of \(\lambda\) and \(\mu\) are orthogonal.)

20. If the coefficient functions \(a_i\) are *real-valued* then \(L^* = L\) if and only if

\[
LX = (a_2X')' + a_0 X.
\]

We usually set \(a_2 = -p\) and \(a_0 = q\) and write the operator in Sturm-Liouville form:

\[
LX = -(pX')' + qX.
\]