
Calculus of Variations 7: Hamilton’s Equations

1. Let T be the kinetic energy and U the potential energy of a mechanical system. Let
qk(t), k = 1, . . . , n be generalized coordinates. According to Hamilton’s principle, the
trajectory of q(t) = (q1(t), . . . , qn(t)) through the configuration space C satisfies the
Euler-Lagrange equations

∂L

∂qk
− d

dt

∂L

∂q̇k
= 0, k = 1, . . . , n, (1)

where the Lagranigian is L = T − U .

2. We can also characterize a mechanical system in terms of the generalized coordinates
qk and the generalized momenta pk. The 2n-dimensional set P of points x = (q, p)
is called the phase space. Adding n new variables doesn’t seem like a step forward,
but doing so will allow us to replace the system (1) of n second-order equations with
one comprising 2n first-order equations. These are called Hamilton’s equations. They
determine the trajectory of the phase point (q(t), p(t)) through P, in other words, the
behavior of the mechanical system.

3. The generalized momenta are

pk = Lq̇k
(t, q, q̇), k = 1, . . . , n. (2)

Think of (2) as a system of n equations in n variables q̇1, . . . , q̇n. We solve the system
for

q̇k = q̇k(t, q, p), k = 1, . . . , n. (3)

In vector form, this is
q̇ = q̇(t, q, p). (4)

The Hamiltonian is

H = −L(t, q, q̇) +
n∑

k=1

q̇kLq̇k
(t, q, q̇)

= −L(t, q, q̇(t, q, p)) +
n∑

k=1

pk q̇k(t, q, p). (5)

(5) gives the Hamiltonian as a function of t, p and q. The partial derivatives of H with
respect to the qj and pj are

∂H

∂pj
= −

n∑
k=1

∂L

∂q̇k

∂q̇k

∂pj
+

n∑
k=1

pk
∂q̇k

∂pj
+ q̇j

= −
n∑

k=1

pk
∂q̇k

∂pj
+

n∑
k=1

pk
∂q̇k

∂pj
+ q̇j

= q̇j , (6)



and

∂H

∂qj
= − ∂L

∂qj
−

n∑
k=1

∂L

∂q̇k

∂q̇k

∂qj
+

n∑
k=1

pk
∂q̇k

∂qj

= − d

dt

∂L

∂q̇j
−

n∑
k=1

pk
∂q̇k

∂qj
+

n∑
k=1

pk
∂q̇k

∂qj

= −ṗj . (7)

Thus,

q̇j =
∂H

∂pj
and ṗj = −∂H

∂qj
, for j = 1, . . . , n. (8)

These are Hamilton’s equations.

4. Example: Consider a pendulum with string of length l and negligible mass and and a
bob of mass m. The generalized coordinate is the angle θ made by the string and the
pendulum. The kinetic and potential energies are

T =
1
2
m(lθ̇)2 and U = mgl(1− cos θ).

Hence the The Lagrangian is

L(θ, θ̇) =
1
2
m(lθ̇)2 −mgl(1− cos θ). (9)

By definition, the generalized momentum is

p =
∂L

∂θ̇
= ml2θ̇,

so that
θ̇ = θ̇(p) =

1
ml2

p.

Finally, by (5), the Hamiltonian is

H = −L(θ, θ̇) + pθ̇

= −1
2
m(lθ̇)2 + mgl(1− cos θ) + pθ̇

= − 1
2ml2

p2 + mgl(1− cos θ) +
1

ml2
p2

=
1

2ml2
p2 + mgl(1− cos θ). (10)



The equations of motion are

θ̇ =
∂H

∂p
=

1
mΛ2

p,

and
ṗ = −∂H

∂θ
= −mgΛ sin θ.

Recall the equation of motion in Lagrangian form, derived from Hamilton’s principle
in the previous set of of notes:

Lθ −
d

dt
Lθ̇ = −mgl sin θ −ml2θ̈ = 0,

or
θ̈ +

g

l
sin θ = 0.

5. Example: Consider a body of mass m moving frictionlessly at the end of a spring.
Let q be the displacement from equilibrium of the mass. By Hooke’s law, the restoring
force of the spring is roughly −kq for small amplitude motion. Hence the potential is

U =
k

2
q2.

The kinetic energy is

T =
1
2
mq̇2,

and the Lagrangian,

L(q, q̇) =
1
2
mq̇2 − k

2
q2. (11)

Therefore,

p =
∂L

∂q̇
= mq̇, (12)

is the generalized momentum. In this case, it is simply the standard momentum. The
Hamiltonian is thus

H = −L + pq̇

= −1
2
mq̇2 +

k

2
q2 + pq̇

= − 1
2m

p2 +
k

2
q2 +

1
m

p2

=
1

2m
p2 +

k

2
q2. (13)

So Hamilton’s equations are

q̇ =
∂H

∂p
=

p

m
,



and

ṗ = −∂H

∂q
= −kq.

You can get the equations of motion in Lagrangian form from (11):

Lq −
d

dt
Lq̇ = −(kq −mq̈) = 0,

or

q̈ +
k

m
q = 0,

which is the familiar simple harmonic oscillator.

6. The derivative of H along the path traced by (q(t), p(t)) in the phase space is

d

dt
H(t, q(t), p(t)) =

∂H

∂t
+

n∑
k=1

(
∂H

∂qk
q̇k +

∂H

∂pk
ṗk

)

=
∂H

∂t
+

n∑
k=1

(
∂H

∂qk

∂H

∂pk
− ∂H

∂pk

∂H

∂qk

)

=
∂H

∂t
. (14)

We’ll draw an important conclusion from (14).

7. In this and the previous set of notes, we’ve seen three examples of kinetic energy. There
was

T = T (θ̇) =
1
2
mΛ2θ̇2, (15)

for the pendulum,

T = T (r, ṙ, θ̇) =
1
2
m(ṙ2 + r2θ̇2). (16)

for the mass in the gravitational field, and

T (q̇) =
1
2
mq̇2. (17)

In each case, T was a quadratic form in the generalized velocities. The coefficients
of the quadratic form were functions of the generalized coordinates. Following these
examples, we will take the kinetic energy to have the form

T (q, q̇) =
n∑

i,j=1

aij(q)q̇iq̇j , (18)



where aij(q) = aji(q). In (16), for example, q = (r, θ), and the coefficients are

a11(q) =
1
2
m, a12(q) = a21(q) = 0, and a22(q) =

1
2
mr2. (19)

We will also assume that the potential U does not depend on q̇. Under these assump-
tions, the Lagrangian has the form

L(t, q, q̇) =
n∑

i,j=1

aij(q)q̇iq̇j − U(q, t). (20)

8. Under the assumptions made in the previous paragraph,

∂L

∂q̇j
= 2

n∑
i=1

aij(q)q̇i.

Here, we have used the fact that aij = aji. Therefore,

H = −L +
n∑

j=1

q̇j
∂L

∂q̇j

= −L + 2
n∑

i,j=1

aij(q)q̇iq̇j ,

= −T + U + 2T

= T + U. (21)

So if L has the form (20), then H is the total energy of the mechanical system.

9. We can draw certain important conclusions from Hamilton’s equations. We already
know that if the Lagrangian does not depend on time, then the Hamiltonian is a first
integral. This fact, along with (21) proves that the total energy is conserved when
L = L(q, q̇). That conclusion can also be drawn straight from Hamilton’s equations: If
H = H(q, p), then (14) reduces to

d

dt
H(q(t), p(t)) = 0. (22)

Thus the total energy is conserved.


