Calculus of Variations 4: Several Functions of a Single Variable

1. Let $x_1(t), \ldots, x_n(t)$ be real-valued functions defined on an interval $a \leq t \leq b$. Let $x: [a,b] \mapsto \mathbf{R}^n$ by

$$x(t) = (x_1(t), \dots, x_n(t)). \tag{1}$$

The function x is vector-valued, or specifically, \mathbb{R}^n -valued. You can think of x(t) as tracing a curve in \mathbb{R}^n as t increases from a to b. We will refer to both the function and the curve as x.

2. The derivative of x at t is the vector

$$\dot{x}(t) = (\dot{x}_1(t), \dots, \dot{x}_n(t)). \tag{2}$$

The vector $\dot{x}(t)$ is tangent to the curve traced by x at the point x(t). If x(t) is the position of a moving particle, then $\dot{x}(t)$ is velocity of the particle.

3. We consider functionals of the form

$$J(x) = \int_a^b L(t, x(t), \dot{x}(t)) dt.$$
(3)

The Lagrangian L is a function of 2n + 1 arguments. We

- **a.** The functions x in the domain \mathcal{D} of J should be smooth. This means that the components x_k have as many continuous derivatives as we require.
- **b.** We impose the boundary conditions on functions in \mathcal{D} ,

$$x(a) = \alpha$$
 and $x(b) = \beta$, (4)

where $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n)$. A function x satisfying (4) traces a curve in \mathbf{R}^n from α to β .

c. Admissible variations are smooth functions $g(t) = (g_1(t), \dots, g_n(t))$ which vanish at a and b. Thus

$$g(a) = g(b) = (0, \dots, 0) = 0 \in \mathbf{R}^n.$$
 (5)

As usual, the class of admissible variations is denoted \mathcal{A} . For $\varepsilon \ll 1$, $x + \varepsilon g$ is a curve from α to β that is "close" to x.

4. The Gâteaux variation of J at $x \in \mathcal{D}$ in the direction $h \in \mathcal{A}$ is

$$\delta J(x,g) = \frac{d}{d\varepsilon} J(x + \varepsilon g) \Big|_{\varepsilon=0}$$

$$= \int_{a}^{b} \sum_{k=1}^{n} \left(\frac{\partial L}{\partial x_{k}} g_{k} + \frac{\partial L}{\partial \dot{x}_{k}} \dot{g}_{k} \right) dt$$

$$= \int_{a}^{b} \sum_{k=1}^{n} \left(\frac{\partial L}{\partial x_{k}} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}_{k}} \right) g_{k} dt + \sum_{k=1}^{n} \frac{\partial L}{\partial \dot{x}_{k}} g_{k} \bigg|_{a}^{b}$$

$$= \int_{a}^{b} \sum_{k=1}^{n} \left(\frac{\partial L}{\partial x_{k}} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}_{k}} \right) g_{k} dt.$$
(6)

By (6), $x \in \mathcal{D}$ is an extremal of J if it satisfies the system of n Euler equations,

$$\frac{\partial L}{\partial x_k} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}_k} = 0, \quad k = 1, \dots, n.$$
 (7)

5. The Hamiltonian is

$$H = -L(t, x, \dot{x}) + \sum_{k=1}^{n} \dot{x} \frac{\partial L}{\partial \dot{x}_k}(t, x, \dot{x}). \tag{8}$$

a. When $L = L(x, \dot{x})$, the Hamiltonian is a first integral of the system of Euler equations. This means that

$$H = -L(x, \dot{x}) + \sum_{k=1}^{n} \dot{x} \frac{\partial L}{\partial \dot{x}_k}(x, \dot{x}) = \text{constant},$$

if x satisfies (7).

- **b.** If $L = L(t, \dot{x})$, then the *n* functions $\partial L/\partial \dot{x}_k$, $k = 1, \ldots, n$ are first integrals of the system (7).
- **c**. If L = L(t, x), then (7) reduces to the system of algebraic equations

$$\frac{\partial L}{\partial x_k} = 0, \quad k = 1, \dots, n.$$